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Abstract. This article studies the fluctuation behaviour of the stochastic point vortex model with
common noise. Using the martingale method combined with a localization argument, we prove

that the sequence of fluctuation processes converges in distribution to the unique probabilistically

strong solution of a linear stochastic evolution equation. In particular, we establish the strong
convergence from the stochastic point vortex model with common noise to the conditional McKean-

Vlasov equation.
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1. Introduction

In this article, we investigate the fluctuation behavior of the following weakly interacting particle
system with common noise on torus T2 = [−π, π]2,

XN
i (t) = Xi(0)+

1

N

∑
j ̸=i

∫ t

0

K(XN
i (s)−XN

j (s))ds+
√
2Bi(t)+

∫ t

0

σ(XN
i (s))◦dWs, t ∈ [0, T ]. (1.1)

This system is commonly referred to as the stochastic point vortex model. Here T > 0, N ∈ N and ◦
denotes the stochastic integral in the Stratonovich sense. The interaction between particles is defined
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by the Biot-Savart kernel K on T2, namely

K(x) = − 1

2π

x⊥

|x|2
+K0(x), x⊥ = (x2,−x1), x = (x1, x2) ∈ T2, (1.2)

where K0 is a smooth correction to periodize K on torus T2 = [−π, π]2. The common noise shared
by all particles is described by the term

∫ ·
0
σ(Xi(s)) ◦ dWs, where σ is a smooth and divergence free

vector field and {Wt, t ∈ [0, T ]} represents a 1-dimensional standard Brownian motion. Additionally,
{Bi, i ∈ N} are independent 2-dimensional Brownian motions on torus T2, modeling the individual
noise for each particle. The initial positions of the particles are given by a sequence of independent
and identically distributed (i.i.d.) random variables {XN

i (0), i ∈ N} taking values in T2. The identical
distribution for initial values {XN

i (0), i ∈ N} is denoted by L(X(0)). We further assume that the
initial positions {XN

i (0), i ∈ N}, the individual noises {Bi, i ∈ N} and environmental noise W are
mutually independent.

The aim of this paper is to study the asymptotic behavior of the fluctuation process

ηNt :=
√
N(µN (t)− vt) =

1√
N

N∑
i=1

(
δXN

i (t) − vt

)
, ∀t ∈ [0, T ], (1.3)

which describes the deviations of the empirical measures of the stochastic point vortex model (1.1)

µN (t) :=

∑N
i=1 δXN

i (t)

N
, ∀t ∈ [0, T ] (1.4)

from the mean field limit (vt)t∈[0,T ]. Here (vt)t∈[0,T ] is the unique probabilistically strong solution

to the following stochastic 2-dimensional Navier-Stokes equation (1.5) on [0, T ] × T2 in the sense of
Definitions 2.2 and 2.3 below :

dv =
(
∆v −K ∗ v · ∇v

)
dt− σ · ∇v ◦ dWt, v(0, ·) = v0. (1.5)

This study is often referred to as the central limit theorem for interacting particle systems (1.1).
Compared to the mean field limit result (1.6), it provides a more precise description of the relationship
between the interacting particle system (1.1) and the mean field limit equation (1.5), i.e, formally

µN
d
≈ v +

1√
N

η,

where
d
≈ means that the approximation holds in distribution and η represents the limiting process

of the sequence {ηN}N∈N in the sense of convergence in distribution. Furthermore, η is typically
Gaussian-distributed in the absence of environmental noise W.

The classical mean field limit for particle systems without common noise, such as (1.1) with σ = 0,
has been extensively studied over the past decade. The goal of studying the mean field limit is to
analyze the asymptotic independence of particles. This result can be expressed in two forms, which
are qualitatively equivalent, as established in [Szn91]. One form is that, for every t ∈ [0, T ], the
empirical measure of the particle system µN (t) satisfies the weak convergence of measures,

µN (t) ⇀ vt. (1.6)

The other form, often referred to as propagation of chaos, states that, for fixed k ∈ N, t ∈ [0, T ],

LN,k(t) ⇀ v⊗k
t ,

where LN,k(t) is the k-marginal of the particle distribution L(XN
1 (t), · · · , XN

N (t)) for (1.1) with σ = 0.
The limiting measure (vt)t∈[0,T ] is the solution to the following nonlinear Fokker-Planck equation

∂tv = ∆v −K ∗ v · ∇v,

and coincides with the law of a solution to the related Mckean Vlasov equation. We refer readers
to the works [Osa86, Szn91, FHM14, Due16, JW18, Ser20, Lac23, BJW23, FW23, GLBM24, Wan24,
CFG+24] for classical results on mean field limit and reference therein. For interacting particle systems
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(1.1) with various kernels K, particular attention has been paid to systems with singular kernels due
to their physical relevance. One of the most well-known examples is the Biot-Savart kernel K, which
is also the focus of our study in this paper. The corresponding particle system is often referred to
as the stochastic point vortex model, which describes the behavior of fluid. Recent advancements in
this area have highlighted the relative entropy method, which not only ensures convergence results
for particle systems (1.1) with singular kernels but also provides quantitative convergence rates. In
our study, we address the central limit problem for the stochastic point vortex model, leveraging
mean field limit results expressed through the relative entropy framework. Additionally, we use this
method to derive uniform estimates. The global relative entropy method was developed by Jabin
and Wang in [JW16] for second-order systems with bounded kernels and in [JW18] for first-order
systems with general W−1,∞ kernels on torus, including the Biot-Savart kernel. Feng and Wang
[FW23] recently extended quantitative particle approximation results for the 2-dimensional Navier-
Stokes equations to the whole space. More recently, Carrillo, Feng, Guo, Jabin and Wang [CFG+24]
used the relative entropy method to study the particle approximation of the spatially homogeneous
Landau equation for Maxwellian molecules. In [Lac23], Lacker developed a new local relative entropy

method, achieving optimal quantitative estimates between LN,k(t) and v⊗k
t . Recently, Wang [Wan24]

extended this approach to handle particle systems with singular W−1,∞ kernels.

A key distinction of our model compared to classical particle systems lies in the introduction of
environmental noise W, which induces stochasticity in the mean field limit (vt)t∈[0,T ]. Specifically, the
mean field limit (vt)t∈[0,T ] satisfies a stochastic nonlinear Fokker-Planck equation (1.5) with transport
noise, rather than a deterministic partial differential equation. Moreover, (vt)t∈[0,T ] coincides with the

conditional law of X̄i(t), which is the solution to the following conditional McKean-Vlasov equation
(1.7), with respect to the environmental noise {Wt, t ∈ [0, T ]}, i.e., vt(dx) = L(X̄i(t)|FW

T )(dx) in the
sense of P(T2),1

X̄i(t) = Xi(0) +

∫ t

0

K ∗ vs(X̄i(s))ds+
√
2Bi(t) +

∫ t

0

σ(X̄i(s)) ◦ dWs. (1.7)

This setup allows us to establish a conditional propagation of chaos type result. For fixed k ∈ N, as
the number of particles N → ∞, we have

FN,k(t) ⇀ F̄N,k(t) := v⊗k
t .

Here FN,k(t)(dxN ) is the k-marginal of the conditional distribution FN (t)(dxN ) ofXN (t) with respect
to the environmental noise {Wt, t ∈ [0, T ]}, defined by

L(XN (t)|FW
T )(dxN ), (1.8)

and F̄N,k(t)(dxN ) is indeed the k-marginal of the conditional distribution F̄N (t)(dxN ) of X̄N (t) with
respect to the environmental noise {Wt, t ∈ [0, T ]}, defined by

L(X̄N (t)|FW
T )(dxN ). (1.9)

We refer to [SZ24] for more details.

One motivation for considering a particle system with common noise is its ability to describe
environmental influences on particles across various fields. For example, in mathematical finance,
such a model reflects the fact that a large financial market should include a common set of assets
accessible to all agents (see e.g., [Lac15]). Additionally, it can help us study the phenomenon known
as regularization by noise (see e.g., [Fla11]). However, the literature on the mean field limit in
the presence of environmental noise remains limited. We refer readers to the works [KX99, CF16b,
Ros20, NRS21, SZ24, Nik24]. Relative entropy method has also been developed to address the case
of environmental noise. In [SZ24], we derived a quantitative particle approximation for the stochastic
2-dimensional Navier-Stokes equation. In [Nik24], Nikolaev established the relative entropy method
for particle systems with a general kernel K ∈ L∞(Rd) ∩ L2(Rd) and Ito’s noise on the whole space.

1We use P(T2) to denote the space of probability measures on T2.
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Another interesting result is presented in [FL21, GL23], where it is shown that the mean field limit
equation can still be a deterministic partial differential equation by rescaling the space covariance of
the noise as the number of particles increases.

Recently, Wang, Zhao and Zhu [WZZ23] study the limiting behavior of the fluctuation process ηN

for the interacting particle system (1.1) with σ = 0 on torus Td by martingale method. They focused
on systems with singular kernels satisfying ∥K∥L∞ < ∞, or K(x) = −K(−x) and ∥xK(x)∥L∞ <
∞, which include important examples such as the Biot-Savart kernel. Using the Itô’s formula, the
fluctuation measure ηN can be formally represented by the following SPDE

dηNt =∆ηNt dt−∇ ·
(
vK ∗ ηN + ηNK ∗ v + 1√

N
ηNK ∗ ηN

)
dt

+
1

2
σ · ∇(σ · ∇ηNt )dt+ dMN

t − (σ · ∇ηNt )dWt, (1.10)

where MN
t is a continuous stochastic process taking values in H−α−1(T2) for every α > 1, introduced

in Section 3.2 below. The most challenging part lies in studying the uniform estimates and convergence
for the interacting term

vK ∗ ηN + ηNK ∗ v + 1√
N

ηNK ∗ ηN ,

due to the singularity of the kernel K and the fluctaution measures (ηN )N⩾1( which live in nega-
tive Sobolev spaces). By the relative entropy method, Wang, Zhao and Zhu [WZZ23] addressed the
challenging issues of uniform estimates and the convergence of interaction term. They showed the con-
vergence from the fluctaution measures (ηN )N⩾1 to the solution η of the fluctuation SPDE (1.11) with
σ = 0 below. Building on the results of [WZZ23], this paper extends their framework to incorporate
the presence of common noise. Specifically, we demonstrate that the sequence of fluctuation measures
(ηN )N⩾1 for the stochastic point vortex model with common noise (1.1) converges in distribution to
a stochastic process η in the space L2([0, T ], H−α) ∩ C([0, T ], H−α−2) for every α > 1. Here η is the
unique probabilistically strong solution to the following fluctuation SPDE (1.11)

dηt = ∆ηtdt−∇ · (vtK ∗ ηt)dt−∇ · (ηtK ∗ vt)dt+
1

2
σ · ∇(σ · ∇ηt)dt+ dMt − (σ · ∇ηt)dWt, (1.11)

where {vt, t ∈ [0, T ]} is the unique probabilistically strong solution to the stochastic 2-dimensional
Navier-Stokes equation (1.5) with initial value v0 ∈ H3 with strictly positive lower bound, i.e.,
infT2 v0 > 0. Compared to the case without environmental noise W , the final fluctuation equation
(1.11) includes two noise terms. The first is a multiplicative transport noise σ · ∇ηtdWt, which
arises from the environmental noise W. The second is an additive noise Mt. As shown in [WZZ23],
{Mt, t ∈ [0, T ]} is a continuous Gaussian process taking values in H−α−1(T2) for every α > 1, in the
absence of environmental noise W. In the presence of environmental noise, it remains a continuous
stochastic process taking values in H−α−1(T2) for every α > 1, but it is no longer Gaussian. Instead,
its conditional distribution satisfies

E
[
exp i ⟨φ,Mt⟩ | FW

T

]
= exp

{
−
∫ t

0

⟨| ∇φ |2, vs⟩ds
}
,

E
[
exp i ⟨φ, (Mt+r −Mt)⟩ | FW

T ∨ FM
t

]
= exp

{
−
∫ t+r

t

⟨| ∇φ |2, vs⟩ds
}
,

(1.12)

for every φ ∈ C∞(T2), 0 ⩽ t < t + r ⩽ T, where (FW
t )t∈[0,T ] is the normal filtration generated

by environmental noise W and (FM
t )t∈[0,T ] is the normal filtration generated by additive noise M.

Therefore, it can be inferred that under the influence of environmental noise W, the distribution of
η is no longer Gaussian. Further explanations on the conditional distribution of Mt can be found in
Remark 2.5.

Theorem 1.1. Assume that the identical distribution L(X(0)) on torus T2 for the i.i.d. initial
values {XN

i (0), i ∈ N} has a density v0 ∈ H3(T2) with strictly positive lower bound, i.e., infT2 v0 >
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0. the sequence of fluctuation measures ηN for the stochastic point vortex model (1.1) converges in
distribution to η in the space

L2([0, T ], H−α) ∩ C([0, T ], H−α−2),

for every α > 1, where η is the unique probabilistically strong solution to the fluctuation SPDE (1.11)
in the sense of Definitions 2.6 and 2.7 below.

The definition of the solutions to the fluctuation SPDE (1.11) can be found in Section 2, Definitions
2.6 and 2.7. During this process, we also obtain the well-posedness of the fluctuation SPDE (1.11).

Corollary 1.2. Given a 1-dimensional Brownian motion {Wt, t ∈ [0, T ]} and a continuous stochastic
process {Mt, t ∈ [0, T ]} taking values in H−α−1(T2) for every α > 1, on probability space (Ω,F ,P),
satisfying (1.12), for each η0 ∈ H−α,∀α > 1,P-a.s., satisfying for every φ ∈ C∞(T2),

L(⟨η0, φ⟩) = N
(
0,
〈
φ2, v0

〉
− ⟨φ, v0⟩2

)
,

there exists a unique probabilistically strong solution to (1.11). Here L(⟨η0, φ⟩) denotes the distribution
of ⟨η0, φ⟩ , and N (0, a) denotes the centered Gaussian distribution on R with variance a.

Similar to the mean-field limit result (1.6), the central limit theorem for the interacting particle
system (1.1) reflects the asymptotic independence of particles. Specifically, in the absence of envi-
ronmental noise W, the distribution of the fluctuation measures {ηN}N∈N becomes asymptotically
Gaussian as N → ∞, like i.i.d. random variables. In the presence of environmental noise W, our
result shows that the asymptotic independence is reflected in an additive noise Mt, which from (1.12)
is “Gaussian conditioned on FW

T .” Additionally, the effect of environmental noise W is captured in
the conditional distribution of Mt and the transport noise σ · ∇ηtdWt, analogous to the mean-field
limit equation (1.5).

1.1. Related literatures. For the fluctuations of interacting diffusions, which is the focus of this
article, one of the earliest results is due to Itô [Itô83], where he showed that for the system of 1-
dimensional independent and identically distributed Brownian motions, the limit of the corresponding
fluctuations is a Gaussian process. One common method to study the central limit theorem for
interacting particle systems (1.1) is the martingale method, which is also employed in this paper. A
significant contribution in this area was made by Fernandez and Méléard [FM97], who studied the
fluctuation behaviour of particle systems with well-regularized kernels and multiplicative independent
noise on the whole space. It was shown that the fluctuation process ηN , as a weighted Sobolev space-
valued random variable, converges to a Gaussian-distributed limit in the sense of distribution, as N →
∞. The requirement for kernels with strong regularity arises for two main reasons. First, the uniform
estimates needed to prove tightness rely on a coupling method, which requires at least Lipschitz
regularity for the kernels. Second, when identifying the tight limit, the second-order differential
operator in the fluctuation equation (1.11) must be linear continuous in the weighted Sobolev space,
necessitating stricter regularity conditions. It is worth emphasizing that the approach introduced in
[FM97] has been amplified to study various interacting models, see [JM98, Che17, CF16a, LS16] etc.
Recent work by Wang, Zhao and Zhu [WZZ23] extends the results to the limiting behavior of the
fluctuation process ηN for interacting particle system (1.1) on torus with singular kernel satisfying
∥K∥L∞ < ∞, or K(x) = −K(−x) and ∥xK(x)∥L∞ < ∞ (e.g., Biot-Savart kernel). Using the relative
entropy method and a structured observation of interaction term, they addressed the challenging issues
of uniform estimates and the convergence of interaction terms when applying the martingale method
to particle systems with singular kernels. Building on [WZZ23], our work applies their framework
to resolve singularity issues in the Biot–Savart law. Another study closely related to our work is
[KX04], which employed a martingale method combined with coupling method to investigate the
convergence of the fluctuation process for interacting particle systems with common noise and time-
varying random intensities (ξj)j⩾1 in the modified Schwartz space. In their model, the random
intensities ξj are governed by a stochastic differential equation driven by independent noise Bj and the
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environmental noise W. The limiting distribution of the fluctuation process is non-Gaussian, consistent
with our findings. Similar to [FM97], their method also required strong regularity assumptions on
the interaction kernel K. More recently, Pengzhi Xie [Xie24] studied the quantitative central limit
theorem for particle systems with summable Fourier modes kernels. We also refer to the works
[Oel87, JM98, CHJ24] which study the fluctuations in the moderate mean field regime.

Additionally, another type result is known as the pathwise central limit theorem. This kind of
result studies the limiting behavior of fluctuation processes based on particle trajectories, consid-
ering the entire paths of particles. For example, we consider the fluctuation processes of the form√
N( 1

N

∑N
i=1 δXi

−L(X)), where X ∈ C([0, T ],Rd) solves some nonlinear stochastic differential equa-
tion. In this context, Tanaka and Hitsuda [TH81] first studied a specific case with K(x) = −λx, λ > 0.
Later, Tanaka [Tan84] extended the analysis to more general kernels K ∈ C2

b , using a pathwise con-
struction approach. Sznitmann [Szn84] removed the differentiability condition on test functions and
generalized the result to bounded and Lipschitz continuous kernel, using Girsanov’s formula and the
method of U -statistics. Recently, Budhiraja and Wu [BW16] studied some general interacting systems
with possible common factors, which do not necessarily have the exchangability property as usual.
Their result follows the strategy by Sznitmann [Szn84]. More recently, Chaintron [Cha24] further
generalized the results to include the case of multiplicative independent noise.

The qualitative central limit theorem for second-order systems is explored in [BH77] and [Lan09].
Among these, [BH77] as the first to investigate the fluctuation behavior of second-order systems.
More recently, significant advancements have been made in [Due21] and [BD24]. Duerinckx [Due21]
achieved optimal quantitative fluctuation estimates, while Bernou and Duerinckx [BD24] established
an uniform-in-time quantitative central limit theorem.

1.2. Outline of proof and difficulties. The proof in this paper consists of two main steps: Step
1 involves establishing tightness, and Step 2 focuses on identifying the tight limit and proving the
pathwise uniqueness of the fluctuation SPDE (1.11).

In the first step, we start by obtaining the necessary uniform estimates for the fluctuation process
(ηN )N∈N and the interacting terms ∇ · [K ∗ µN (t)µN (t) − vtK ∗ vt], KN (φ) defined in (3.2) below,
using the relative entropy method. The main challenge in this step is to establish the tightness of
the laws of {ηN} based on these estimates. On one hand, the uniform bound for the relative entropy
supt∈[0,T ] H(FN

t |F̄N
t )(ω) depends on ω ∈ Ω, due to the singularity of the Biot–Savart kernel and the

presence of environmental noise {Wt, t ∈ [0, T ]}. This prevents us from obtaining the tightness of
the laws of {ηN} directly. However, when K is bounded or there is no common noise, the uniform
relative entropy supt∈[0,T ] H(FN

t |F̄N
t ) can be bounded by a deterministic constant. On the other

hand, compared to the case without common noise in [WZZ23], we must handle the uniform estimate
for the Hölder seminorm of the new transport noise term σ · ∇ηNt dWt. To address these challenges,
based on [WZZ23], a classical localization method is applied. Specifically, we study tightness through
introducing two sequence of stopping times to control the mean field limit v and the fluctuation
measures ηN .

In the second step, we identify the tight limit η̃ in Proposition 3.9 and establish the existence of so-
lutions to the fluctaution SPDE (1.11). The main difficulty in this step is identifying the additive noise
{Mt, t ∈ [0, T ]} in the fluctution SPDE (1.11) through studying the conditional law of {Mt, t ∈ [0, T ]}
with respect to the environmental noise {Wt, t ∈ [0, T ]}. To overcome this challenge, we establish a
strong convergence ( see Proposition 4.1 below) from the stochastic point vortex system (1.1) to the
conditional Mckean-Vlasov equation (1.7), and then derive the conditional law of the additive noise
{Mt, t ∈ [0, T ]}, following the idea in [KX04]. Pathwise uniqueness for the fluctuation SPDE (1.11)
is then proven using standard SPDE arguments.

Organization of the paper. The paper is structured as follows. Section 2 provides an introduction
to key definitions related to the mean field limit equation (1.5), the fluctuation SPDE (1.11), and
some auxiliary results that will be used in the subsequent proofs. The main sections of the paper are
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Section 3 and Section 4. In Section 3, we study the tightness of laws of {ηN}N∈N in the space X
(defined in Definition (2.4)) and {MN}N∈N in the space Y (defined in Definition (2.4)). In Section
4, we establish the well-posedness of the fluctuation SPDE (1.11) and convergence of the fluctuation
process {ηN}N∈N to the unique probabilistically strong solution η to the fluctuation SPDE (1.11) in
the sense of distribution.

At the end of this section, we introduce the basic notation used throughout the paper.

(1) Bracket notations: The bracket ⟨·, ·⟩ denotes integrals when the space and underlying measure
are clear from the context. We use a similar bracket [·, ·]t to denote quadratic variations
between local martingales at time t.

(2) Filtration notations: The notation F1 ∨ F2 stands for the σ-algebra generated by F1 ∪ F2.
Given a stochastic process Xt, t ∈ [0, T ], we use (FX

t )t∈[0,T ] to denote the normal filtration

generated by X. In particular, we use (FW
t )t∈[0,T ] to denote the normal filtration generated

by 1-dimensional Brownian motions {Wt, t ∈ [0, T ]}. We also use (Ft)t∈[0,T ] to denote the
normal filtration generated by 1-dimensional Brownian motionW and 2-dimensional Brownian
motions (Bi)i⩾1 and (Xi(0))i⩾1.

(3) Distribution notations: Given a Polish space E and probability space (Ω,F ,P), we say
Q(dx, ω) is a random meausre on E, if Q(dx, ω) is a function of two variables ω ∈ Ω and
A ∈ B(E), satisfies that there exists a null set N ∈ F such that Q(dx, ω) is a measure in A for
fixed ω ∈ N c. Given σ-algebra F , we use L(X), L(X|F) to denote the distribution of X and
conditional distribution of X with respect to F . In particular, for convention, we may denote
the distribution by its density function when the distribution has a density function. Given a
symmetric probability measure ρN on EN where E is a Polish space, the k-marginal ρN,k is
a probability measure on Ek defined by

∫
EN−k ρ

N (dx1 · · · dxN ), where k ⩽ N. Finally, we use
P(E) to denote the space of probability measure on E.

(4) Independence and Conditional independence: Given three σ-algebras F1, F2, and F3, we use
F1 ⊥ F2|F3 to indicate that F1 and F2 are conditionally independent given F3. F1 ⊥ F2

indicates that F1 and F2 are mutually independent.
(5) Product space and Product function: Given two measure spaces (Ω1,A1, µ1) and (Ω2,A2, µ2),

we denote their product space as Ω1×Ω2, the product σ-algebra as A1×A2, and the product
measure as µ1×µ2. For k ∈ N, we use (Ω⊗k

1 ,A⊗k
1 , µ⊗k

1 ) to denote the k-product measure space
for the measure space (Ω1,A1, µ1). Given a function f(x), x ∈ E on Polish space E and k ∈ N,
the k-tensorized function f⊗k(xk) is defined by

∏k
i=1 f(xi), where xk = (x1, · · · , xk) ∈ Ek.

(6) We will mostly work on Sobolev spaces. The norm of Sobolev space Hα(Td), α ∈ R, is defined
by

∥f∥2Hα :=
∑
k∈Zd

(1 + |k|2)α|⟨f, ek⟩|2,

where ek := e
√
−1k·x, k ∈ Zd. We also use some results on Besov spaces Bα

p,q in this paper and
provide a brief introduction about Besov spaces in Section 2.3.

Finally, throughout this paper, we use C to denote universal constants, and we indicate relevant
dependencies using subscripts when necessary. We use the notation a ≲ b if there exists a universal
constant C > 0 such that a ⩽ Cb.

2. Preliminaries

In this section, we introduce the definitions of solutions and collect some auxiliary results.

2.1. Definitions of solutions. In this subsection, we present several distinct definitions for solutions
to the stochastic 2-dimensional Navier-Stokes equation (1.5) and the fluctuation SPDE (1.11). The
following definitions for solutions to the stochastic 2-dimensional Navier-Stokes equation (1.5) are
consistent with those in [SZ24] and the well-posedness of (1.5) has also been established in [SZ24].
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Definition 2.1. A probabilistically weak solution (Ω,F , (Gt)t∈[0,T ],P,W, (vt)t∈[0,T ]) to (1.5) with ini-

tial value v0 ∈ H3(T2) is defined as a stochastic basis (Ω,F , (Gt)t∈[0,T ],P) supporting standard (Gt)t∈[0,T ]-

Brownian motion {Wt, t ∈ [0, T ]} (denoted by W ) and a continuous L2(T2)-valued Gt-adapted stochas-
tic process (vt)t∈[0,T ] such that

(1) For all t ∈ [0, T ],

ess sup
x∈T2

vt ⩽ ess sup
x∈T2

v0, ess inf
x∈T2

vt ⩾ ess inf
x∈T2

v0, ∥vt∥L2 ⩽ ∥v0∥L2 , P− a.s.. (2.1)

(2) It holds that

E
∫ T

0

∥vt∥2H4dt < ∞, E
[

sup
t∈[0,T ]

∥vt∥2H2

]
< ∞. (2.2)

(3) For all φ ∈ C∞(T2), it holds almost surely that for all t ∈ [0, T ],

⟨φ, vt⟩ = ⟨φ, v0⟩+
∫ t

0

⟨∆φ, vs⟩ds+
∫ t

0

⟨∇φ,K ∗ vsvs⟩ds+
∫ t

0

⟨∇φ, vsσ⟩ ◦ dWs.

Definition 2.2. Given a independent 1-dimensional Brownian motion {Wt, t ∈ [0, T ]} on a probability
space (Ω,F ,P), we say that (vt)t∈[0,T ] is a probabilistically strong solution to (1.5) with initial value

v0 ∈ H3(T2) if (Ω,F , (FW
t )t∈[0,T ],P, (vt)t∈[0,T ]) is a probabilistically weak solution to (1.5) with initial

value v0 ∈ H3(T2), where (FW
t )t∈[0,T ] is the normal filtration generated by Brownian motions {Wt, t ∈

[0, T ]}.

Definition 2.3. We say that pathwise uniqueness holds for (1.5) if for any two probabilistically weak
solutions (vt)t∈[0,T ] and (ṽt)t∈[0,T ] on the same stochastic basis (Ω,F , (Gt)t∈[0,T ],P), with the same
noise {Wt, t ∈ [0, T ]} and the same initial data v0, it satisfies

P
(
∥vt − ṽt∥L2 = 0,∀t ∈ [0, T ]

)
= 1.

Before introducing the definitions of solutions to (1.11), we first define a Polish space in which the
solution exists. This space is given by

D := X × Y ×W (2.3)

equipped with the metric dD(f, g) := (
∑

i=X ,Y,W d2i (f, g))
1
2 , where

X :=
⋂
k∈N

[
C([0, T ];H−3− 1

k (T2)) ∩ L2([0, T ];H−1− 1
k (T2))

]
,

Y :=
⋂
k∈N

C([0, T ];H−2− 1
k (T2)),

W := C([0, T ];R),

endowed with the metrics

dX (f, g) :=

∞∑
k=1

2−k

(
1 ∧

(
∥f − g∥

C([0,T ];H−3− 1
k )

+ ∥f − g∥
L2([0,T ];H−1− 1

k )

))
,

dY(f, g) :=

∞∑
k=1

2−k
(
1 ∧ ∥f − g∥

C([0,T ];H−2− 1
k )

)
.

Similarly, we define Polish space

H := V × X × Y ×W (2.4)

equipped with the metric dH(f, g) := (
∑

i=V,X ,Y,W d2i (f, g))
1
2 , where

V := C([0, T ];L2(T2)) ∩ L2([0, T ];H4(T2))
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endowed with the metric dV(f, g) := ∥f−g∥C([0,T ];L2)+∥f−g∥L2([0,T ];H4). We then give the definitions
about the solution to the fluctuation SPDE (1.11).

Definition 2.4. A probabilistically weak solution

(
Ω,F , (Gt)t∈[0,T ],P,

(
ηt,Mt,Wt

)
t∈[0,T ]

)
to the

SPDE (1.11) is defined as a stochastic basis (Ω,F , (Gt)t∈[0,T ],P) supporting the stochastic process(
ηt,Mt,Wt

)
t∈[0,T ]

valued in D,

(1) W is (Gt)t∈[0,T ]-1-dimensional Brownian motion.

(2) (Mt)t∈[0,T ] is a Gt-adapted process belonging to C([0, T ];H−α(T2)) P-a.s., for every α > 2,

and satisfying for every φ ∈ C∞(T2), 0 ⩽ t < t+ r ⩽ T,

E
[
exp i ⟨φ,Mt⟩ | FW

T

]
= exp

{
−
∫ t

0

⟨| ∇φ |2, vs⟩ds
}
,

E
[
exp i ⟨φ, (Mt+r −Mt)⟩ | FW

T ∨ FM
t

]
= exp

{
−
∫ t+r

t

⟨| ∇φ |2, vs⟩ds
}
,

(3) (ηt)t∈[0,T ] is a continuous H−α−2(T2)-valued Gt-adapted stochastic process satisfying η ∈
L2([0, T ], H−α(T2)) P-a.s., for every α > 1.

(4) For all φ ∈ C∞(T2), it holds almost surely that for all t ∈ [0, T ],

⟨ηt, φ⟩ =⟨η0, φ⟩+
∫ t

0

⟨∆φ, ηs⟩ds+
∫ t

0

⟨∇φ, vsK ∗ ηs⟩ds+
∫ t

0

⟨∇φ, ηsK ∗ vs⟩ds

+ ⟨Mt, φ⟩+
1

2

∫ t

0

〈
σ · ∇

(
σ · ∇φ

)
, ηs

〉
ds+

∫ t

0

⟨σ · ∇φ, ηs⟩dWs, (2.5)

where (vt)t∈[0,T ] is the unique probabilistically strong solution to the mean field equation (1.5)
in the sense of Definitions 2.2 and 2.3.

Remark 2.5. Condition (2) in Definition 2.4 specifies the conditional distribution of M with respect
to the environmental noise W, which uniquely determines the joint distribution of M and W. Notably,
this condition also shows that given the environmental noise information FW

T , the distribution of Mt

is similar to a Gaussian distribution.

Definition 2.6. Given a 1-dimensional Brownian motion {Wt, t ∈ [0, T ]} and a stochastic process

{Mt, t ∈ [0, T ]} with values in
⋂

k∈N C([0, T ];H−2− 1
k (T2)) on a probability space (Ω,F ,P) satisfying

for every φ ∈ C∞(T2), 0 ⩽ t < t+ r ⩽ T,

E
[
exp i ⟨φ,Mt⟩ | FW

T

]
= exp

{
−
∫ t

0

⟨| ∇φ |2, vs⟩ds
}
,

E
[
exp i ⟨φ, (Mt+r −Mt)⟩ | FW

T ∨ FM
t

]
= exp

{
−
∫ t+r

t

⟨| ∇φ |2, vs⟩ds
}
,

we say that (ηt)t∈[0,T ] is a probabilistically strong solution to (1.11) if(
Ω,F , (FW,M

t )t∈[0,T ],P,
(
ηt,Mt,Wt

)
t∈[0,T ]

)
is a probabilistically weak solution to (1.11) where (FW,M

t )t∈[0,T ] is the normal filtration generated by
{Wt, t ∈ [0, T ]}, {Mt, t ∈ [0, T ]}, and the initial value η0.

Definition 2.7. We say that pathwise uniqueness holds for (1.11) if for any two probabilistically
weak solutions (ηt)t∈[0,T ] and (η̃t)t∈[0,T ] on the same stochastic basis (Ω,F , (Gt)t∈[0,T ],P), with the
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same noise {Wt, t ∈ [0, T ]}, {Mt, t ∈ [0, T ]} and the same initial data η0 ∈ ∩k∈NH
−1− 1

k (T2), it
satisfies that for every 4 > α > 3,

P( sup
t∈[0,T ]

∥ηt − η̃t∥2H−α = 0) = 1.

2.2. Relative entropy and stochastic point vortex model. In this section, we collect the auxil-
iary results from [JW18], [SZ24] and [FHM14] for convenience. We start this section by recalling the
definition of relative entropy associated to any two probability measures ρ and η on Polish space E.

The relative entropy H(ρ|η) is defined as

H(ρ|η) :=


∫
E

log
dρ

dη
dρ ρ ≪ η;

+∞, otherwise.

Here dρ
dη represents the Radon–Nikodym derivative of ρ with respect to η.

The following lemma is used to derive the uniform estimates for the stochastic point vortex model
(1.1), i.e., Lemma 3.1, in Section 3.

Lemma 2.8 ([JW18, Lemma 1]). For any two probability densities ρN , ρ̄N on T2N , N ⩾ 1 and any
function ϕ ∈ L∞(T2N

)
, one has that for any constant b > 0,∫

T2N

ϕρNdxN ⩽
1

bN

(
H(ρN |ρ̄N ) + log

∫
T2N

ρ̄N exp{bNϕ}dxN

)
.

The following two results from [SZ24] establish the well-posedness of the stochastic 2-dimensional
Navier-Stokes equation (1.5) and provide a quantitative conditional propagation of chaos result for
the stochastic point vortex model (1.1).

Lemma 2.9 ([SZ24, Theorem 3.1]). Given 1-dimensional standard Brownian motion {Wt, t ∈ [0, T ]}
on probability space (Ω,F ,P), for each v0 ∈ H3(T2), there exists a unique probabilistically strong
solution (vt)t∈[0,T ] to (1.5) in the sense of Definitions 2.2 and 2.3.

Lemma 2.10 ([SZ24, Theorem 1.1]). Assume that the probability measure v0 = L(X(0)) on T2 has
a density v0 ∈ H3(T2) and inf

x∈T2
v0 > 0. Then, it holds that

H(FN
t |F̄N

t ) ⩽ exp

(
C0

∫ t

0

(∥vs∥2H4 + 1)ds

)
∀t ∈ [0, T ] P− a.s.,

where C0 is a positive deterministic constant depending on ∥v0∥L2(T2) and inf
x∈T2

v0, F
N
t and F̄N

t are

random measures on torus T2N defined in (1.8) and (1.9), and (vt)t∈[0,T ] is the unique probabilistically
strong solution to the stochastic 2-dimensional Navier-Stokes equation (1.5) with the initial data v0
in the sense of Definition 2.2 and 2.3.

The following lemma will be applied in the proof of Proposition 4.1, in which the strong convergence
between the stochastic point vortex model (1.1) and the conditional Mckean-Vlasov equation (1.7) is
established.

Lemma 2.11 ([FHM14, Lemma 3.3]). For any r ∈ (0, 2) and β > r
2 , there exists a constant Cr,β > 0

depends on r, β such that for any probability measure ρ on T2×T2with finite Fisher information I(ρ),∫
T2

1

|x1 − x2|r
ρ(dx1dx2) ⩽ Cr,β(I

β(ρ) + 1).

Here the Fisher information I(ρ) on T2 is defined by
∫
T2

|∇ρ|2
ρ dx.
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2.3. Besov space. In this subsection, we collect useful results related to Besov spaces. We use
(∆i)i⩾−1 to denote the Littlewood-Paley blocks for a dyadic partition of unity. Besov spaces Bα

p,q on
the torus with α ∈ R and 1 ⩽ p, q ⩽ ∞, are defined as the completion of C∞ with respect to the norm

∥f∥Bα
p,q

:=
( ∑

n⩾−1

(2nαq∥∆nf∥qLp)
) 1

q

.

We remark that Bα
2,2 coincides with the Sobolev space Hα, α ∈ R. We say f ∈ Cα, α ∈ N, if f

is α-times differentiable. For α ∈ R \ N, we set Cα = Bα
∞,∞. We will often write ∥ · ∥Cα instead of

∥ · ∥Bα
∞,∞

. In the case α ∈ R+ \ N, Cα coincides with the usual Hölder space. We use C∞ to denote

the space of infinitely differentiable functions on T2.

We quote the following results about Besov spaces.

Lemma 2.12 ([Tri06, Proposition 4.6]). Let α ∈ R, β ∈ R and p1, p2, q1, q2 ∈ [1,∞]. Then the
embedding

Bα
p1,q2 ↪→ Bβ

p2,q2

is compact if and only if,

α− β > d
( 1

p1
− 1

p2

)
+
.

Lemma 2.13. (i) Let α, β ∈ R and p, p1, p2, q ∈ [1,∞] be such that 1
p = 1

p1
+ 1

p2
. The bilinear map

(u, v) 7→ uv extends to a continuous map from Bα
p1,q × Bβ

p2,q to Bα∧β
p,q if α + β > 0 (cf. [MW17,

Corollary 2]).

(ii) (Duality.) Let α ∈ (0, 1), p, q ∈ [1,∞], p′ and q′ be their conjugate exponents, respectively.
Then the mapping (u, v) 7→ ⟨u, v⟩ =

∫
uvdx extends to a continuous bilinear form on Bα

p,q × B−α
p′,q′ ,

and one has |⟨u, v⟩| ≲ ∥u∥Bα
p,q

∥v∥B−α

p′,q′
(cf. [MW17, Proposition 7]).

Lemma 2.14 ([BCD11, Corollary 2.86] ). For any positive real number α and any p, q ∈ [1,∞], it
holds that

∥fg∥Bα
p,q

≲ ∥f∥L∞∥g∥Bα
p,q

+ ∥f∥Bα
p,q

∥g∥L∞ ,

with the proportional constant independent of f and g.

Lemma 2.15 ([KS21, Theorem 2.1 and 2.2]). Let α, β ∈ R, q, q1, q2 ∈ (0,∞] and p, p1, p2 ∈ [1,∞] be
such that

1 +
1

p
=

1

p1
+

1

p2
,

1

q
⩽

1

q1
+

1

q2
.

(1) If f ∈ Bα
p1,q and g ∈ Lp2 , then f ∗ g ∈ Bα

p,q and

∥f ∗ g∥Bα
p,q

≲ ∥f∥Bα
p1,q

· ∥g∥Lp2 ,

(2) If f ∈ Bα
p1,q1 and g ∈ Bβ

p2,q2 , then f ∗ g ∈ Bα+β
p,q and

∥f ∗ g∥Bα+β
p,q

≲ ∥f∥Bα
p1,q1

· ∥g∥Bβ
p2,q2

,

with the proportional constant independent of f and g.

3. Uniform estimates

The goal of this section is to prove the tightness of laws of the fluctuation measures (ηN )N∈N and

the tightness of laws of the additive noise (MN )N∈N. Recall that for t ∈ [0, T ], ηNt =
√
N(µN (t)− vt)

and µN (t) = 1
N

∑N
i=1 δXi(t). The additive noise term (MN )N∈N given in Lemma 3.4 below, satisfies

for all t ∈ [0, T ] and φ ∈ C∞,
〈
MN

t , φ
〉
=

√
2√
N

∑N
i=1

∫ t

0
∇φ(Xi) · dBi

s, P-a.s..
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Applying Itô’s formula to the interacting particle system (1.1), we derive the following SPDE
representation for the fluctuation measures (ηNt )t∈[0,T ] i.e., for every φ ∈ C∞(T2),〈

φ, ηNt
〉
=
〈
φ, ηN0

〉
+

∫ t

0

〈
∆φ, ηNs

〉
ds+

1

2

∫ t

0

〈
σ · ∇

(
σ · ∇φ

)
, ηNs

〉
ds

+
√
N

∫ t

0

⟨∇φ, µN (s)K ∗ µN (s)⟩ds−
√
N

∫ t

0

t ⟨∇φ, vsK ∗ vs⟩ds

+
√
2

∫ t

0

1√
N

N∑
i=1

∇φ(Xi
s) · dBi(s) +

∫ t

0

〈
σ · ∇φ, ηNs

〉
dWs. (3.1)

For simplicity, we define the following interacting terms KN
t : C∞(T2) → R

KN
t (φ) :=

√
N⟨∇φ,K ∗ µN (t)µN (t)⟩ −

√
N⟨∇φ, vtK ∗ vt⟩. (3.2)

To establish the tightness of the fluctuation measures {ηN}N∈N and the additive noise term {MN}N∈N,
we first obtain the uniform estimates for ηNt ,∇ · [K ∗ µN (t)µN (t) − vtK ∗ vt],KN

t (φ) in Section 3.1
following the estimates in [WZZ23]. We also establish an additional estimate Lemma 3.5 in Section
3.2, by exploiting the structure of (3.1). The proof of tightness is more complicated than the case
without environmental noise W, since we have to deal with the new transport noise term σ · ∇ηNt dWt

and the uniform bound for the relative entropy supt∈[0,T ] H(FN
t |F̄N

t )(ω) in Lemma 2.10 depends on
ω ∈ Ω. To address these challenges, we use a classical localization argument.

3.1. Estimates on the relative entropy. In this section, we apply the relative entropy method to
obtain uniform estimates essential for the subsequent proof of tightness.

The core idea behind the relative entropy method is to employ the Donsker-Varadhan variational
formula, which gives Lemma 2.8, to decompose the target integral into two terms. One term is the
relative entropy, which is bounded almost surely ( i.e., Lemma 2.10), while the other is an exponential-
type integral that can be controlled using estimates [JW18, Theorem 4] and [WZZ23, Lemma 2.3].
Compared to [WZZ23], in the environmental noise case, the components {X̄i, i ∈ N} of the lim-
iting nonlinear SDE (1.7) are no longer independent but conditionally independent and identically
distributed, i.e., for i ̸= j

L(X̄i(t)|FW
T )(dx) = L(X̄j(t)|FW

T )(dx) = vt(dx), P− a.s.

in the sense of P(T2) and

X̄i(t) ⊥ X̄j(t)|FW
T .

At this time, two target measures in Lemma 2.8 are considered as FN (t)(dxN ) and F̄N (t)(dxN ) defined
in (1.8) and (1.9).

Lemma 3.1. For each α > 1, there exist constants Cα and C such that for all N ∈ N,

(1)

E
[
∥µN (t)− vt∥2H−α | FW

T

]
⩽
Cα

N
(H(FN (t)|F̄N (t)) + 1), ∀t ∈ [0, T ], P− a.s.,

(2)

E
[
∥∇ · [K ∗ µN (t)µN (t)− vtK ∗ vt]∥2H−α | FW

T

]
⩽
Cα

N
(H(FN (t)|F̄N (t)) + 1), ∀t ∈ [0, T ], P− a.s.,

(3)

E
[
|⟨φK ∗ (µN (t)− vt), µN (t)− vt⟩| | FW

T

]
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⩽
C

N
(H(FN (t)|F̄N (t)) + 1), ∀t ∈ [0, T ], P− a.s.,

where the random measures FN (t)(dxN ) and F̄N (t)(dxN ) on torus T2N are defined by (1.8), (1.9),
and vt is the unique probabilistically strong solution to the mean field limit equation (1.5) in the sense
of Definitions 2.2 and 2.3.

Proof. We now obtain estimates concerning the fluctuation measures, based on the results in [WZZ23].

For example, we express the conditional expectation E
[
∥µN (t)−vt∥2H−α | FW

T

]
through the conditional

law of particles XN (t) with respect to the environmental noise FW
T ,

E
[
∥µN (t)− vt∥2H−α | FW

T

]
=

∫
TdN

∥µN − vt∥2H−αFN (t)(dxN ),

where FN (t)(dxN ) = L(XN (t)|FW
T )(dxN ) is a random measure on torus T2N . Through Donsker-

Varadhan variational formula i.e. Lemma 2.8, we have

E
[
∥µN (t)− vt∥2H−α | FW

T

]
⩽

1

κN

(
H(FN (t)|F̄N (t)) + log

∫
T2N

exp
(
κN∥µN − vt∥2H−α

)
F̄N (t)(dxN )

)
,

where F̄N (t)(dxN ) = L((X̄N (t))|FW
T )(dxN ) = v⊗N

t (dxN ) is a random measure on torus T2N . The
rest of the proof follows by the same analysis in [WZZ23, Lemma 2.6-Lemma 2.9]. □

From Lemma 2.10, we know that it holds almost surely that for all

1

2eC0T

(
H(FN (t)|F̄N (t)) + 1

)
exp

{
−
∫ t

0

C0∥vs∥2H4ds

}
⩽ 1,

where C0 is a positive deterministic constant depending on ∥v0∥L2(T2) and inf
x∈T2

v0. By choosing m =

2eC0T + C0 > 1, which depends on ∥v0∥L2(T2), inf
x∈T2

v0 and T, we then obtain

1

m
exp

{
−
∫ t

0

m∥vs∥2H4ds

}(
H(FN (t)|F̄N (t)) + 1

)
⩽ 1,P− a.s..

We then deduce the following result by Lemma 3.1.

Corollary 3.2. For each t ∈ [0, T ], define the weight term for f ∈ L2([0, T ];H4), Rt(f) =
1
m exp

{
−∫ t

0
m∥fs∥2H4ds

}
, where the deterministic constant m > 1 depends on ∥v0∥L2(T2), inf

x∈T2
v0 and T. Then,

for each α > 1, there exist constants Cα and C such that for all N ∈ N,

(1)

sup
t∈[0,T ]

E
[
Rt(v)∥µN (t)− vt∥2H−α

]
⩽

Cα

N
,

(2)

sup
t∈[0,T ]

E
[
Rt(v)∥∇ · [K ∗ µN (t)µN (t)− vtK ∗ vt]∥2H−α

]
⩽

Cα

N
,

(3)

sup
t∈[0,T ]

E
[
Rt(v) | ⟨φK ∗ (µN (t)− vt), µN (t)− vt⟩ |

]
⩽

C

N
.
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Remark 3.3. Since the initial values are i.i.d. random variables, the classical central limit theorem
allows us to infer that for each φ ∈ C∞(T2), we have

〈
ηN0 , φ

〉
=

1√
N

N∑
i=1

[
φ(Xi(0))− ⟨φ, µ⟩

]
N→∞−−−−→ N

(
0,
〈
φ2, µ

〉
− ⟨φ, µ⟩2

)
,

in the sense of distribution, where N (0, a) denotes the centered Gaussian distribution on R with
variance a. Using Lemma 3.1 which gives the tightness of laws of {ηN (0)} in H−α, we then conclude
that for every α > 1, ηN0 converges in distribution to some η0 in H−α.

3.2. Tightness. In this section, we will prove the tightness of laws of {L(v, ηN ,MN ,W ), N ∈ N} on
the Polish space H = V ×X ×Y ×W, which is given by (2.4). We begin by introducing the following
pathwise representation of the additive noise part in the decomposition of (3.1), given by

√
2√
N

N∑
i=1

∫ t

0

∇φ(Xi) · dBi
s,

for each φ ∈ C∞(T2), along with its corresponding estimate. The proof is provided in [WZZ23].

Lemma 3.4. For each N , there exists a progressively measurable process MN with values in H−α,
for every α > 2, such that

(1) For all t ∈ [0, T ] and φ ∈ C∞(Td), it holds P-a.s.,

〈
MN

t , φ
〉
=

√
2√
N

N∑
i=1

∫ t

0

∇φ(Xi) · dBi
s,

(2) For every α > 2, θ′ ∈ (0, 1
2 ), there exists constants CT,α,θ′ and CT,α such that

sup
N

E(∥MN∥2
Cθ′ ([0,T ],H−α)

) ⩽ CT,α,θ′ ,

sup
N

E
[

sup
t∈[0,T ]

∥MN
t ∥2H−α

]
⩽ CT,α.

Furthermore, for every α > 2, the sequence (MN )N∈N is tight in the space C([0, T ], H−α).

Before proceeding, we introduce the following stopping times {τR, R > 0}.

τR := inf

{
0 < t ⩽ T : R−1

t (v) = m exp

{∫ t

0

m∥vs∥2H4ds

}
> R

}
,

(with the convention inf ∅ = T ) and define

ηNR (t) := ηN (t ∧ τR), t ∈ [0, T ].

Then, we obtain the uniform estmates on ηN before the stopping time τR through Corollary 3.2.

Lemma 3.5. For every α > 3 and R > 0, there exists a constant Cα,σ,T,R such that

sup
N

E sup
t∈[0,T ]

∥ηNR (t)∥2H−α ⩽ Cα,σ,T,R.

Proof. Notice that for each N ∈ N, it holds P-a.s. that for every t ∈ [0, T ],

ηNt∧τR − ηN0 = −
√
N

∫ t∧τR

0

∇ · (µN (s)K ∗ µN (s))ds+
√
N

∫ t∧τR

0

∇ · (vsK ∗ vs)ds

+

∫ t∧τR

0

∆ηNs ds+
1

2

∫ t∧τR

0

σ · ∇
(
σ · ∇ηNs

)
ds+MN

t∧τR −
∫ t∧τR

0

σ · ∇ηNs dWs.
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Since R−1
t (v) ⩽ R before the stopping time τR, we then have

sup
t∈[0,T ]

∥∥ηNt∧τR

∥∥2
H−α ≲ ∥ηN0 ∥2H−α +

5∑
i=1

Ji,

where

J1 :=

∫ T

0

RRs(v)∥∆ηNs ∥2H−αds,

J2 :=

∫ T

0

RRs(v)∥σ · ∇
(
σ · ∇ηNs

)
∥2H−αds,

J3 :=

∫ T

0

RRs(v)N∥∇
(
µN (s)K ∗ µN (s)− vsK ∗ vs

)
∥2H−αds,

J4 := sup
t∈[0,T ]

∥MN
t ∥2H−α ,

J5 := sup
t∈[0,T ]

∥
∫ t∧τR

0

σ · ∇ηNs dWs∥2H−α .

Observe that Lemma 2.13 implies ∥σ · ∇
(
σ · ∇ηNs

)
∥2H−α ⩽ Cσ∥ηNs ∥2H−α+2 . By applying Corollary

3.2, we then have

sup
N

E[J2] ⩽ CσRT sup
t∈[0,T ]

E
[
Rt(v)∥ηNt ∥2H−α+2

]
⩽ RTCα,σ.

Similarly, by Corollary 3.2, we have

sup
N

E[J1 + J3] ⩽ RTCα,σ.

Recall that we have already established supN E[J4] ⩽ CT,α in Lemma 3.4. For J5, applying Burkholder-
Davis-Gundy’s inequality, we have

E[J5] ⩽ E
∫ T∧τR

0

∥σ · ∇ηNs ∥2H−αds

⩽ CσRT sup
t∈[0,T ]

E
[
Rt(v)∥ηNt ∥2H−α+1

]
⩽ Cα,σ,T,R.

Summerizing the estimates above, the proof is then completed. □

For α > 3, we define the following stopping times {τα,M,R,M,R > 0},

τNα,M,R := inf

{
0 < t ⩽ T : sup

s∈[0,t]

∥ηNs ∥2H−α > M

}
∧ τR,

(with the convention inf ∅ = T ) and the associated stopped process

ηNα,M,R(t) := ηN (t ∧ τNα,M,R), t ∈ [0, T ].

Based on Lemma 3.5, we derive a uniform estimate for the Hölder semi-norm of ηN .

Lemma 3.6. For every α > 3 and θ ∈ (0, 1
2 ), there exists a constant Cα,σ,θ,R,M,T such that for every

R > 0 and M > 0,

sup
N

E
[
∥ηNα,M,R∥Cθ([0,T ],H−α)

]
⩽ Cα,σ,θ,R,M,T , (3.3)

where

∥ft∥Cθ([0,T ],H−α) := sup
0⩽s<t⩽T

∥ft − fs∥H−α

(t− s)θ
.



16 YUFEI SHAO AND XIANLIANG ZHAO

Proof. Notice that for each N ∈ N, it holds P-a.s. that for every t ∈ [0, T ],

ηNt∧τN
α,M,R

− ηN0 = −
√
N

∫ t∧τN
α,M,R

0

∇ · (µN (s)K ∗ µN (s))ds+
√
N

∫ t∧τN
α,M,R

0

∇ · (vsK ∗ vs)ds

+

∫ t∧τN
α,M,R

0

∆ηNs ds+
1

2

∫ t∧τN
α,M,R

0

σ · ∇
(
σ · ∇ηNs

)
ds

+MN
t∧τN

α,M,R
−
∫ t∧τN

α,M,R

0

σ · ∇ηNs dWs.

Thus, {∥ηNt − ηNs ∥H−α , 0 ⩽ s < t < T} thus can be controlled by the following relation

∥ηNα,M,R(t)− ηNα,M,R(s)∥H−α ≲
7∑

i=1

J i
s,t, (3.4)

where J i
s,t, i = 1, . . . , 5, are defined as

J1
s,t :=

∥∥∥∥∫ t

s

I[0,τN
α,M,R](r)∆ηNr dr

∥∥∥∥
H−α

, J2
s,t :=

∥∥∥∥∫ t

s

I[0,τN
α,M,R](r)KN

r dr

∥∥∥∥
H−α

,

J3
s,t :=

∥∥∥∥∫ t

s

I[0,τN
α,M,R](r)σ · ∇(σ · ∇ηNr )dr

∥∥∥∥
H−α

, J4
s,t :=

∥∥∥MN
t∧τN

α,M,R
−MN

s∧τN
α,M,R

∥∥∥
H−α

,

J5
s,t :=

∥∥∥∥∫ t

s

I[0,τN
α,M,R](r)σ · ∇ηNr dWr

∥∥∥∥
H−α

.

where KN
t =

√
N∇ · [K ∗ µN (t)µN (t)−K ∗ vtvt].

For the drift terms J i
s,t, i = 1, 2, 3, it is sufficient to prove that

sup
N

E

(
sup

0⩽s<t⩽T

J i
s,t

(t− s)
1
2

)2

< C.

Indeed, for every θ ∈ (0, 1
2 ), we have the following estimate.

E

(
sup

0⩽s<t⩽T

J i
s,t

(t− s)θ

)
⩽E

(
sup

0⩽s<t⩽T

J i
s,t

(t− s)
1
2

)
T

1
2−θ ⩽

[
E

(
sup

0⩽s<t⩽T

J i
s,t

(t− s)
1
2

)2 ] 1
2

T
1
2−θ.

For J1
s,t, note that R−1

t (v) = m exp

{∫ t

0
m∥vs∥2H4ds

}
⩽ R before the stopping time τα,M,R, and we

apply Hölder’s inequality to derive the following estimate

sup
N

E

(
sup

0⩽s<t⩽T

J1
s,t

(t− s)
1
2

)2

⩽ sup
N

E
[ ∫ T

0

I[0,τN
α,M,R](t)∥∆ηNt ∥2H−αdt

]
⩽ sup

N
E
[ ∫ T

0

RRt(v)∥∆ηNt ∥2H−αdt
]

⩽RT sup
N

sup
t∈[0,T ]

E
[
Rt(v)∥∆ηNt ∥2H−α

]
⩽ RTCα,

(3.5)

where the final inequality follows from Corollary 3.2. Using a similar approach, we have

sup
N

E

(
sup

0⩽s<t⩽T

J2
s,t

(t− s)
1
2

)2

⩽RT sup
N

sup
t∈[0,T ]

E
[
Rt(v)∥KN

t ∥2H−α

]
⩽ RTCα, (3.6)
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where we used Corollary 3.2 to reach the final inequality, and

sup
N

E

(
sup

0⩽s<t⩽T

J3
s,t

(t− s)
1
2

)2

⩽RT sup
N

sup
t∈[0,T ]

E
[
Rt(v)∥σ · ∇(σ · ∇ηNt )∥2H−α

]
⩽CσRT sup

N
sup

t∈[0,T ]

E
[
Rt(v)∥ηNt ∥2H−α+2

]
⩽ RTCα,σ.

(3.7)

where we applied Lemma 2.13 to get the second inequality and Lemma 3.2 to get the final inequality.

Followng the same approach in Lemma 3.4, i.e., [WZZ23, Lemma 3.2], we conclude that for any
θ ∈ (0, 1

2 ),

sup
N

E
(

sup
0⩽s<t⩽T

J4
s,t

|t− s|θ

)
⩽ Cα,θ. (3.8)

For J5
s,t, applying Burkholder-Davis-Gundy’s inequality [BFH18, Theorem 2.3.8] gives, for any

θ′ > 1,

sup
N

E(|J5
s,t|2θ

′
) ⩽Cθ′ sup

N
E
[ ∫ t

s

I[0,τN
α,M,R](r)∥σ · ∇ηNR ∥2H−αdr

]θ′

⩽Cθ′,σ sup
N

E
[ ∫ t

s

I[0,τN
α,M,R](r) sup

s∈[0,r]

∥ηNs ∥2H−αdr
]θ′

⩽ Cθ′,σ,M | t− s |θ
′
,

where in the final inequality we use the fact that for P-a.s., sups∈[0,t] ∥ηNR (s)∥2H−α ⩽ M up to the

stopping time τα,M,R. By applying the Kolmogorov continuity theorem [BFH18, Theorem 2.3.11], we
then deduce that for any θ ∈ (0, 1

2 ),

sup
N

E
(

sup
0⩽s<t⩽T

J5
s,t

|t− s|θ

)
⩽ Cθ,σ,M . (3.9)

The result follows by combining inequalities (3.5)-(3.9). □

Then, we demonstrate the tightness of the fluctuation measures (ηN )N⩾1 in the Polish space

X =

{⋂
k∈N

[
C([0, T ], H−3− 1

k ) ∩ L2([0, T ], H−1− 1
k )
]}

.

Lemma 3.7. The sequence of laws of (ηN )N⩾1 is tight in the space X .

Proof. First, we claim that it is sufficient to prove the tightness of the sequence of laws of (ηN )N⩾1

in the space

Xk := C([0, T ], H−3− 1
k ) ∩ L2([0, T ], H−1− 1

k )

for each fixed k ∈ N. Indeed, if the sequence of laws of (ηN )N⩾1 is tight in the space Xk for each k,

then for any ϑ > 0, we can choose compact sets Aϑ
k in C([0, T ], H−3− 1

k ) ∩ L2([0, T ], H−1− 1
k ) for each

k ∈ N such that

P(ηN /∈ Aϑ
k) < ϑ2−k, ∀N ∈ N.

The set Aϑ in X defined by

Aϑ :=
⋂
k∈N

Aϑ
k

is compact and satisfies

P
(
ηN /∈ Aϑ

)
⩽
∑
k∈N

P(ηN /∈ Aϑ
k) < ϑ, ∀N ∈ N,

which implies (ηN )N⩾1 is tight in the space X .
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Next, we prove that the sequence (ηN )N⩾1 is tight in the space C([0, T ], H−α−2)∩L2([0, T ], H−α),
for every α > 1. For any δ > 0 and α > α′ > 1, we define

Kδ :=

{
η
∣∣ sup
t∈[0,T ]

∥ηt∥H−α′−2 ⩽
1

δ
,

∫ T

0

∥ηt∥2
H− 2α+2

4
dt ⩽

1

δ
, ∥η∥

C
1
8 ([0,T ],H−α−2)

⩽
1

δ

}
which is a compact subset of C([0, T ], H−α−2) ∩ L2([0, T ], H−α) as established by [BFH18, corollary
1.8.4] and Arzela-Ascoli theorem [Kel17, Theorem 7.17]. Recall the stopping times and stopped
processes,

τR = inf

{
0 < t ⩽ T : R−1

t (v) = m exp

{∫ t

0

m∥vs∥2H4ds

}
> R

}
,

τNα+2,M,R = inf

{
0 < t ⩽ T : sup

s∈[0,t]

∥ηNR (s)∥2H−α−2 > M

}
∧ τR,

and

ηNR (t) = ηN (t ∧ τR), t ∈ [0, T ],

ηNα+2,M,R(t) = ηN (t ∧ τNα+2,M,R), t ∈ [0, T ],

we can directly conclude that for every R > 0 and M > 0,

P
(
ηN /∈ Kδ

)
⩽P
(
ηN = ηNR = ηNα+2,M,R /∈ Kδ,m exp

{∫ T

0

m∥vs∥2H4ds

}
⩽ R, sup

t∈[0,T ]

∥ηNR (t)∥2H−α−2 ⩽ M

)
+P
(
m exp

{∫ T

0

m∥vs∥2H4ds

}
⩾ R

)
+ P

(
sup

t∈[0,T ]

∥ηNR (t)∥2H−α−2 ⩾ M

)
.

Given ε > 0, since R−1
T (v) = m exp

{∫ T

0
m∥vs∥2H4ds

}
< ∞,P-a.s., we can thus choose a sufficiently

large R0 > 0 such that

P
(
m exp

{∫ T

0

m∥vs∥2H4ds

}
⩾ R0

)
⩽

ε

4
.

By Chebyshev’s inequality, we have

P
(

sup
t∈[0,T ]

∥ηNR0
(t)∥2H−α−2 ⩾ M

)
⩽

E
[
supt∈[0,T ] ∥ηNR0

(t)∥2H−α−2

]
M

.

Using Lemma 3.5, we can choose a sufficiently large M0 > 0 such that for all N ∈ N,

P
(

sup
t∈[0,T ]

∥ηNR0
(t)∥2H−α−2 ⩾ M0

)
⩽

ε

4
.

We then conclude that

P
(
ηN /∈ Kδ

)
⩽ P

(
ηN = ηNR0

= ηNα+2,M0,R0
/∈ Kδ,m exp

{∫ T

0

m∥vs∥2H4ds

}
⩽ R0,

and sup
t∈[0,T ]

∥ηNR0
(t)∥2H−α−2 ⩽ M0

)
+

ε

2
.

⩽ P
(

sup
t∈[0,T ]

∥ηNR0
(t)∥H−α′−2 ⩾

1

δ

)
+ P

(
∥ηNα+2,M0,R0

∥
C

1
8 ([0,T ],H−α−2)

⩾
1

δ

)
+ P

(
R0

∫ T

0

Rt(v)∥ηNt ∥2
H− 2α+2

4
dt ⩾

1

δ

)
+

ε

2
.
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Applying Chebyshev’s inequality again, along with Corollary 3.2, Lemma 3.5 and Lemma 3.6, we can

select a sufficiently small δ0 > 0 such that P
(
ηN /∈ Kδ0

)
< ε, which completes the proof. □

It is well known that every probability measure on a Polish space is tight. Then, we have the
tightness of laws of v and W. Combining Lemma 3.4 and Lemma 3.7, we conclude the following result.

Lemma 3.8. The law of
(
v, ηN ,MN ,W

)
with values in H as defined in (2.4) is tight.

By Skorohod’s representation, we obtain the following result.

Proposition 3.9. There exists a subsequence of (v, ηN ,MN ,W )N⩾1, still denoted by (v, ηN ,MN ,W )

for simplicity, and a probability space (Ω̃, F̃ , P̃) with H-valued random variables (ṽN , η̃N ,M̃N , W̃N )N⩾1

and (ṽ, η̃, M̃ , W̃ ) such that

(1) For each N ∈ N, the law of (ṽN , η̃N ,M̃N , W̃N ) coincides with the law of (v, ηN ,MN ,W ).

(2) The sequence of H-valued random variables (ṽN , η̃N ,M̃N , W̃N )N⩾1 converges to (ṽ, η̃, M̃ , W̃ )

in H P̃-a.s..

Remark 3.10. We emphasize that (ṽN , W̃N )N⩾1 are different random variables, but they share the

same law on the new probability space (Ω̃, F̃ , P̃).

4. Well posedness of the fluctuation SPDE

This section aims to establish the well-posedness of the fluctuation SPDE (1.11) and the convergence
from the fluctuation measures (η̃N )N⩾1 to the probabilistically strong solution η̃ of the fluctuation
SPDE (1.11).

4.1. Identification of the limiting points. In this subsection, we identify the limiting points of
the fluctuation process (η̃N )N⩾1 as probabilistically weak solutions to the fluctuation SPDE (1.11).

The proof proceeds in several steps. First, we identify the joint law of (M̃, W̃ ) in Lemma 4.2. Next,

we study the convergence of the interacting term K̃N
t (φ) in Lemma 4.4. In the third step, we show

that the limit process ṽ, given in Propositon 3.9, is the unique probabilistically strong solution to the
mean field limit equation (1.5), as shown in Proposition 4.6. Finally, we prove the convergence of the

transport noise term σ · ∇η̃tdW̃t in Proposition 4.7.

There are two challenges in this section. Firstly, unlike in the case without environmental noise W,
we must address not only the convergence of the fluctuation measures (η̃N )N⩾1 and the additive noise

(M̃N )N⩾1, but also the convergence of the new multiplicative noise term σ ·∇η̃NdW̃N
t , as well as the

convergence of the random mean field limit ṽN . Furthermore, we identifying the joint law of (M̃, W̃ ) by

studying the conditional law of additive noise {M̃t, t ∈ [0, T ]} with respect to the environmental noise
FW

T , which is the main challenge in this section. To address this, we establish the following strong
convergence from the interacting particle system (1.1) to the conditional Mckean-Vlasov equation
(1.7).

Proposition 4.1. For i ∈ N and t ∈ [0, T ], we have 2

lim
N→∞

E
∣∣XN

i (t)− X̄i(t)
∣∣2 = 0, (4.1)

where XN is the unique probabilistically strong solution to the stochastic point vortex model (1.1) with
i.i.d. initial values XN (0) = (X1(0), · · · , XN (0)) and X̄i is the unique probabilistically strong solution
to the conditional Mckean-Vlasov equation (1.7) with initial value Xi(0).

2The well-posedness of stochastic point vortex model (1.1) and conditional Mckean-Vlasov equation (1.7) has been
given in [SZ24, Lemma 3.4, Proposition 4.1].
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Proof. Consider the difference between the particle system (1.1) and the conditional Mckean-Vlasov
equation (1.7),

XN
i (t)− X̄i(t) =

∫ t

0

(
K ∗ µN (s)(XN

i (s))−K ∗ vs(X̄i(s))
)
ds

+

∫ t

0

(
σ(XN

i (s))− σ(X̄i(s))
)
◦ dWs

=

∫ t

0

(
K ∗ µN (s)(XN

i (s))−K ∗ vs(X̄i(s))
)
ds

+
1

2

∫ t

0

(
(σ · ∇σ)(XN

i (s))− (σ · ∇σ)(X̄i(s))
)
ds+

∫ t

0

(
σ(XN

i (s))− σ(X̄i(s))
)
dWs.

where we convert the Stratonovich integral into Itô’s integral in the last equality.

In our previous work [SZ24, Lemma 3.2], we showed that v ∈ C([0, T ];H2),P-a.s.. We now define
the stopping times {ΘR, R > 0} (with the convention inf ∅ = T ) as follows.

ΘR := inf

{
0 < t ⩽ T |Ht(v) := sup

s∈[0,t]

∥vs∥H2 +m exp

{∫ t

0

m∥vs∥2H4ds

}
> R

}
.

Applying Itô’s formula, we obtain

| XN
i (t ∧ΘR)− X̄i(t ∧ΘR) |2 =

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
K ∗ µN (s)(XN

i (s))−K ∗ vs(X̄i(s))
)
ds

+
1

2

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
(σ · ∇σ)(XN

i (s))− (σ · ∇σ)(X̄i(s))
)
ds

+

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
σ(XN

i (s))− σ(X̄i(s))
)
dWs

+

∫ t∧ΘR

0

(
σ(XN

i (s))− σ(X̄i(s))
)2

ds.

Direct computation yields the following identity

| XN
i (t ∧ΘR)− X̄i(t ∧ΘR) |2 =

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
K ∗ µN (s)(XN

i (s))−K ∗ vs(XN
i (s))

)
ds

+

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
K ∗ vs(XN

i (s))−K ∗ vs(X̄i(s))
)
ds

+
1

2

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
(σ · ∇σ)(XN

i (s))− (σ · ∇σ)(X̄i(s))
)
ds

+

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
σ(XN

i (s))− σ(X̄i(s))
)
dWs

+

∫ t∧ΘR

0

(
σ(XN

i (s))− σ(X̄i(s))
)2

ds.

By Sobolev embedding theorem, we deduce that

∥K ∗ vs∥C1 ⩽ ∥K ∗ vs∥H3 = ∥∇⊥(−∆)−1vs∥H3 ⩽ ∥vs∥H2 . (4.2)

Here we used the fact the Biot-Savart kernel K = ∇⊥G, where G is the Green function of −∆ on
torus, as given in [FGP11]. Through the compactness of torus, together with the Lipschitz property
of σ, σ · ∇σ,K ∗ vs and the estimate for K ∗ vs given in (4.2), we obtain the following estimate.

| XN
i (t ∧ΘR)− X̄i(t ∧ΘR) |2 ⩽ C

∫ t∧ΘR

0

∣∣K ∗ µN (s)(XN
i (s))−K ∗ vs(XN

i (s))
∣∣ds
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+

∫ t

0

(Cσ +R) | XN
i (s ∧ΘR)− X̄i(s ∧ΘR) |2 ds

+

∫ t∧ΘR

0

(XN
i (s)− X̄i(s))

(
σ(XN

i (s))− σ(X̄i(s))
)
dWs.

Taking expectation of both sides, we then conclude that

E
[
| XN

i (t ∧ΘR)− X̄i(t ∧ΘR) |2
]
⩽(Cσ +R)

∫ t

0

E
[
| XN

i (s ∧ΘR)− X̄i(s ∧ΘR) |2
]
ds

+ C

∫ T

0

E
[
I{s⩽ΘR} | K ∗ µN (s)(XN

i (s))−K ∗ vs(XN
i (s)) |

]
ds.

We now deal with the interacting term K ∗ µN (s)(XN
i (s)) −K ∗ vs(XN

i (s)). As done in [FGP11,
Section 3.2], we first regularize K by introducing smooth periodic functions Kε such that Kε(x) =
K(x) for any |x| > ε and they satisfy

|K(x)|+ |Kε(x)| ≲
1

|x|
, ∀ε > 0. (4.3)

We decompose the interaction term into three parts.

K ∗ µN (s)(XN
i (s))−K ∗ vs(XN

i (s)) =

3∑
i=1

Ji,

where

J1(s) := K ∗ µN (s)(XN
i (s))−Kε ∗ µN (s)(XN

i (s)),

J2(s) := Kε ∗ µN (s)(XN
i (s))−Kε ∗ vs(XN

i (s)),

J3(s) := Kε ∗ vs(XN
i (s))−K ∗ vs(XN

i (s)).

Recall that v is a continuous L2-valued FW
t -adapted process, we then have∫ T

0

E
[
I{s⩽ΘR}J1(s)

]
ds =

∫ T

0

E
[
I{s⩽ΘR}E

[ 1
N

∑
j ̸=i

(K −Kε)(X
N
i (s)−XN

j (s))|FW
T

]]
ds

⩽
N − 1

N

∫ T

0

E
[
I{s⩽ΘR}E

[
|K −Kε|(XN

1 (s)−XN
2 (s))|FW

T

]]
ds,

where the second inequality follows from the symmetry of the random measure L(XN (t)|FW
T )(dxN )

on T2N . The upper bound (4.3) for the Biot-Savart kernel K and its regularized version Kε yields∫ T

0

E
[
I{s⩽ΘR}J1(s)

]
ds ≲

∫ T

0

E
[
I{s⩽ΘR}

∫
T2

1

|x1 − x2|
I{|x1−x2|⩽ε}F

N ;2(s)(dx1,dx2)
]
ds

⩽E
[
ε

1
2

∫
T2

I{|x1−x2|⩽ε}
1

|x1 − x2|
3
2

FN ;2(s)(dx1,dx2)
]
ds,

where FN ;2(t)(dx1,dx2) is the 2-marginal of the random measure FN (t)(dxN ) = L(XN (t)|FW
T )(dxN )

on T2N . Using the property of Fisher information, i.e., Lemma 2.11, we conclude that∫ T

0

E
[
I{s⩽ΘR}J1(s)

]
ds ≲ε

1
2E
∫ T

0

[
C(I(FN ;2(s)) + 1)

]
ds

⩽ε
1
2E
∫ T

0

[
C(

2

N
I(FN (s)) + 1)

]
ds ⩽ Cv0ε

1
2 .

Here we used the sub-additivity of Fisher information, i.e., I(FN,k(t)) ⩽ k
N I(FN (t)),∀k ⩽ N, to

derive the second inequality. For the final inequality, we applied the boundness about the Fisher

information I(FN (t)) for FN (t)(dxN ), i.e.,
∫ T

0
I(FN (t))dt ⩽ Cv0 , given in [SZ24, Lemma 4.2].
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Moving on to J2, by the Sobolev embedding theorem, we find that for α > 1,∫ T

0

E
[
I{s⩽ΘR}J2(s)

]
ds =

∫ T

0

E
[
I{s⩽ΘR}E

[
Kε ∗ µN (s)(XN

i (s))−Kε ∗ vs(XN
i (s))|FW

T

]]
ds

⩽
∫ T

0

E
[
I{s⩽ΘR}E

[
∥Kε ∗ µN (s)−Kε ∗ vs∥L∞ |FW

T

]
ds

≲
∫ T

0

E
[
I{s⩽ΘR}E

[
∥Kε ∗ µN (s)−Kε ∗ vs∥H2 |FW

T

]
ds.

Applying Lemma 2.15 yields∫ T

0

E
[
I{s⩽ΘR}J2(s)

]
ds ≲

∫ T

0

E
[
I{s⩽ΘR}E

[
∥Kε∥B2+α

1,2
∥µN (s)− vs∥H−α |FW

T

]
ds

⩽∥Kε∥B2+α
1,2

∫ T

0

E
[
I{s⩽ΘR}RRs(v)∥µN (s)− vs∥H−α

]
ds

⩽∥Kε∥B2+α
1,2

T
CR,α

N
,

where the last inequality is derived using Corollary 3.2.

Finally, using the upper bound (4.3) of Biot-Savart kernel K and regularized version Biot-Savart
kernel Kε again, we have∫ T

0

E
[
I{s⩽ΘR}J3(s)

]
ds ⩽

∫ T

0

E
[
|Kε ∗ vs(XN

i (s))−K ∗ vs(XN
i (s))|

]
ds

≲
∫ T

0

E
[ ∫

T2

1

|XN
i (s)− y|

I{|XN
i −y|⩽ε}vs(y)dy

]
ds

⩽ Cv0ε
1
2

∫ T

0

E
[ ∫

T2

1

|XN
i (s)− y| 32

dy
]
ds ⩽ Cv0,T ε

1
2 .

Here the third inequality follows from the regularity of v in Definition (2.1), i.e., ∥vt∥L∞ ⩽ ∥v0∥L∞ ,∀t ∈
[0, T ],P-a.s.. In summary, we conclude that

E
[
| XN

i (t ∧ΘR)− X̄i(s ∧ΘR) |2
]
⩽(Cσ +R)

∫ t

0

E
[
| XN

i (s ∧ΘR)− X̄i(s ∧ΘR) |2
]
ds

+ Cv0,T ε
1
2 + ∥Kε∥B2+α

1,2
T
CR,α

N
.

Choosing some α0 > 1 and applying Gronwall’s lemma, we get

E
[
| XN

i (t ∧ΘR)− X̄i(t ∧ΘR) |2
]
⩽
(
Cv0,T ε

1
2 + ∥Kε∥B2+α0

1,2
T
CR,α0

N

)
exp{(Cσ +R)T}.

Let N → ∞ and then ε → 0, we have lim
N→∞

E
[
sups∈[0,T ] | XN

i (s ∧ΘR)− X̄i(s ∧ΘR) |2
]
= 0, for

every R > 0. Since the compactness of T2 ensures that supN E[| XN
i (t)− X̄i(t) |2] < ∞, we arrive at

the desired result.

lim
N→∞

E[| XN
i (t)− X̄i(t) |2]

= lim
N→∞

∞∑
n=0

E
[
| XN

i (t ∧Θn+1)− X̄i(t ∧Θn+1) |2 I{n ⩽ HT (v) < n+ 1}
]

=

∞∑
n=0

lim
N→∞

E
[
| XN

i (t ∧Θn+1)− X̄i(t ∧Θn+1) |2 I{n ⩽ HT (v) < n+ 1}
]

⩽
∞∑

n=0

lim
N→∞

E
[
| XN

i (t ∧Θn+1)− X̄i(t ∧Θn+1) |2
]
= 0.



THE FLUCTUATION BEHAVIOUR OF THE STOCHASTIC POINT VORTEX MODEL WITH COMMON NOISE 23

□

Now, let (Gt)t∈[0,T ] be the natural filtration of the process (ṽ, η̃,M̃, W̃ ). That means that, for each

t ∈ [0, T ], Gt is the smallest σ-algebra such that ṽ(s) : Ω̃ → L2, η̃(s) : Ω̃ → Hα, α = −3 − 1
k , k ∈ N,

M̃(s) : Ω̃ → Hγ , γ = −2 − 1
k , k ∈ N, and W̃ (s) : Ω̃ → R are measurable for all s ∈ [0, t]. Let

N := {M ∈ F̃ | P̃(M) = 0}. We will consider the augmented filtration (F̃t)t∈[0,T ] which is defined by

F̃t :=
⋂
s>t

σ (Gs ∪N ) , t ∈ [0, T ].

The augmented filtration (F̃t)t is a normal filtration. For N ∈ N, we do the same construction to

define the natural filtration (GN
t )t∈[0,T ] and the corresponding augmented filtration (F̃N

t )t∈[0,T ] of

(ṽN , η̃N ,M̃N , W̃N ).

We now focus on the conditional law of {M̃t, t ∈ [0, T ]} with respect to the environmental noise

FW̃
T . The basic idea, inspired by [KX04], is to consider a similar form of “{MN

t , t ∈ [0, T ]}” derived
from the conditionally i.i.d. particles {X̄i}i⩾1 of (1.7), instead of the interacting particle system (1.1).
This requires the strong convergence result of XN

i to X̄i, established in Proposition 4.1. Using the

classical central limit theorem, we ultimately obtain that the conditional law of {M̃t, t ∈ [0, T ]} given
by (4.4).

Lemma 4.2. For every φ ∈ C∞(T2) and 0 ⩽ t < r + t ⩽ T, it holds P̃-a.s. that

Ẽ
[
exp{i⟨M̃t, φ⟩} | FW̃

T

]
= exp

{
−
∫ t

0

⟨| ∇φ |2, ṽs⟩ds
}
,

E
[
exp i

〈
φ, (M̃t+r − M̃t)

〉
| FW̃

T ∨ FM̃
t

]
= exp

{
−
∫ t+r

t

⟨| ∇φ |2, ṽs⟩ds
}
.

(4.4)

Proof. Given a random variable Z which can be written as g(W̃ ), where g is bounded and continuous.
We thus have

Ẽ
[
exp{i⟨M̃t, φ⟩}Z

]
= lim

N→∞
Ẽ
[
exp{i⟨M̃N

t , φ⟩}g(W̃N )
]

= lim
N→∞

E
[
exp{i⟨MN

t , φ⟩}g(W )
]

= lim
N→∞

E
[
(exp{i⟨MN

t , φ⟩} − exp{i⟨M̄N
t , φ⟩})g(W )

]
+ lim

N→∞
E
[
exp{i⟨M̄N

t , φ⟩}g(W )
]
.

where ⟨M̄N
t , φ⟩ is defined as

√
2√
N

∑N
i=1

∫ t

0
∇φ(X̄i) · dBi

s, with XN
i in M replaced by X̄i from the

conditional Mckean Vlasov equation (1.7).

Then,

E
∣∣∣∣(exp{i⟨MN

t , φ⟩} − exp{i⟨M̄N
t , φ⟩})g(W )

∣∣∣∣
≲

[
E
∣∣∣∣ √2√

N

N∑
i=1

∫ t

0

∇φ(XN
i ) · dBi

s −
√
2√
N

N∑
i=1

∫ t

0

∇φ(X̄i) · dBi
s

∣∣∣∣2] 1
2

≲
[
E
∫ t

0

|∇φ(XN
1 )−∇φ(X̄1)|2ds

] 1
2

where the first inequality uses the fact that g is bounded and Hölder’s inequality, while the second in-
equality follows from Burkholder-Davis-Gundy’s inequality and the symmetry of the law of (XN , X̄N ).
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Using Proposition 4.1, we have

lim
N→∞

E
∣∣∣∣(exp{i⟨MN

t , φ⟩} − exp{i⟨M̄N
t , φ⟩})g(W )

∣∣∣∣ = 0.

Notice that {(X̄i, Bi)}i⩾1 is conditionally i.i.d. with respect to FW
T , we thus have

lim
N→∞

E
[
exp{i⟨M̄N

t , φ⟩}g(W )
]

= lim
N→∞

E
[
E
[
exp

{ √
2√
N

∫ t

0

∇φ(X̄1) · dB1
s

}
| FW

T

]N
g(W )

]
= E

[
exp

{
−
∫ t

0

⟨| ∇φ |2, vs⟩ds
}
g(W )

]
= Ẽ

[
exp

{
−
∫ t

0

⟨| ∇φ |2, ṽs⟩ds
}
Z

]
.

where the second equality is a consequence of central limit theorem [DD19, Theorem 3.4.1]. By Lusin

theorem, Z can be extended to be any bounded FW̃
T measureable random variables. The proof of the

second identity is similar. □

Before proceeding, let’s recall the following abbreviation defined in Corollary 3.2, for t ∈ [0, T ] and
f ∈ L2([0, T ];H4(T2)),

Rt(f) =
1

m
exp

{
−
∫ t

0

m∥fs∥2H4ds

}
, (4.5)

where the deterministic constant m > 1 depends on ∥v0∥L2(T2), inf
x∈T2

v0 and T.

To prepare the proof for the convergence for the interacting term,∫ t

0

K̃N
s (φ)− ⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds N→∞−−−−→ 0,

we establish the following modified limit about fluctuation measures.

Lemma 4.3. For every α > 1, it holds that

Ẽ
∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

∥∥
H−αdt

N→∞−−−−→ 0. (4.6)

Proof. By Hölder’s inequality, we have

Ẽ
[ ∫ T

0

RT (ṽ)∥η̃t∥H−αdt
]2

⩽
√
T
[
Ẽ
∫ T

0

R2
T (ṽ)∥η̃t∥2H−αdt

] 1
2

.

Recall the definitions about RT (ṽ
N ),RT (ṽ) in (4.5) and notice that R2

T (ṽ
N ) ⩽ RT (ṽ

N ) ⩽ Rt(ṽ
N ),

we then infer that ∀α > 1,

Ẽ
∫ T

0

R2
T (ṽ)∥η̃t∥2H−αdt ⩽ sup

N
Ẽ
∫ T

0

RT (ṽ
N )∥η̃Nt ∥2H−αdt

⩽ T sup
t∈[0,T ]

sup
N

Ẽ
[
RT (ṽ

N )∥η̃Nt ∥2H−α

]
⩽ T sup

t∈[0,T ]

sup
N

E
[
Rt(v)∥ηNt ∥2H−α

]
< ∞,

where we used Corollary 3.2 to get the last inequality.

The above content provides the uniform integrability of∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

∥∥
H−αdt.
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Thus the convergence ∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

∥∥
H−αdt

N→∞−−−−→ 0, P̃− a.s.

leads to (4.6). □

We now deal with the interacting term.

Lemma 4.4. For each φ ∈ C∞(T2), it holds that

Ẽ
(

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

RT (ṽ
N )K̃N

s (φ)−RT (ṽ)⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds
∣∣∣∣ 12) N→∞−−−−→ 0,

where

K̃N
t (φ) :=

√
N⟨∇φ,K ∗ µ̃N (t)µ̃N (t)⟩ −

√
N⟨∇φ, ṽNt K ∗ ṽNt ⟩,

and

µ̃N :=
1√
N

η̃N + ṽN .

Moreover, there exists a subsequence {Nk}k⩾1 ( still denoted by {N}N∈N for simplicity) such that∫ t

0

K̃N
s (φ)− ⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds N→∞−−−−→ 0, ∀t ∈ [0, T ], P̃− a.s..

Proof. Notice that
√
N
(
µ̃NK ∗ µ̃N − ṽNK ∗ ṽN

)
= ṽNK ∗ η̃N + η̃NK ∗ ṽN +

1√
N

η̃NK ∗ η̃N .

Consequently, for each φ ∈ C∞, we have

sup
t∈[0,T ]

∣∣ ∫ t

0

RT (ṽ
N )K̃N

s (φ)−RT (ṽ)⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds
∣∣∣∣ 12

⩽
√
JN
1 (φ) +

√
JN
2 (φ), (4.7)

where

JN
1 (φ) :=

√
NRT (ṽ

N )

∫ T

0

∣∣〈∇φK ∗ (µ̃N (t)− ṽNt ), µ̃N (t)− ṽNt
〉∣∣dt,

JN
2 (φ) :=

∫ T

0

∣∣RT (ṽ
N )
〈
ṽNt K ∗ η̃Nt + η̃Nt K ∗ ṽNt ,∇φ

〉
(4.8)

−RT (ṽ)
〈
ṽtK ∗ η̃t + η̃tK ∗ ṽt,∇φ

〉∣∣dt.
On one hand, Lemma 3.2 yields the following estimate

ẼJN
1 (φ) ⩽ T

√
N sup

t∈[0,T ]

Ẽ
∣∣RT (ṽ

N )⟨∇φK ∗ (µ̃N (t)− ṽNt ), µ̃N (t)− ṽNt ⟩
∣∣

= T
√
N sup

t∈[0,T ]

E
∣∣RT (v)⟨∇φK ∗ (µN (t)− vt), µN (t)− vt⟩

∣∣
⩽ T

√
N sup

t∈[0,T ]

E
∣∣Rt(v)⟨∇φK ∗ (µN (t)− vt), µN (t)− vt⟩

∣∣ ≲ N− 1
2

N→∞−−−−→ 0.

With Hölder’s inequality, we infer Ẽ
√

JN
1 (φ) ⩽

[
Ẽ(JN

1 (φ))
] 1

2 N→∞−−−−→ 0. On the other hand, we have

Ẽ
√
JN
2 (φ) ⩽ Ẽ

[ 4∑
i=1

∫ T

0

Hidt
] 1

2

. (4.9)
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where

H1 :=
∣∣〈ṽtK ∗

(
RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
)
,∇φ

〉∣∣,
H2 :=

∣∣〈(RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

)
K ∗ ṽt,∇φ

〉∣∣,
H3 :=RT (ṽ

N )
∣∣〈(ṽNt − ṽt)K ∗ η̃Nt ,∇φ

〉∣∣,
H4 :=RT (ṽ

N )
∣∣〈η̃Nt K ∗ (ṽNt − ṽt),∇φ

〉∣∣.
For each t ∈ [0, T ], we deduce that for every α > 1 that

H1 =
∣∣〈K(−·) ∗ (ṽt∇φ),RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
〉∣∣

⩽
∥∥RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
∥∥
H−α∥K(−·) ∗ (ṽt∇φ)∥Hα ,

where

K(−·) ∗ g(x) :=
∫

K(y − x)g(y)dy. (4.10)

Recall that K ≲ 1
|x| ∈ L1(T2), we apply Lemma 2.15 with p = p1 = q = 2 and Lemma 2.14 to get

H1 ≲
∥∥RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
∥∥
H−α · ∥K∥L1(∥ṽt∥Hα∥∇φ∥L∞ + ∥ṽt∥L∞∥∇φ∥Hα),

≲
∥∥RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
∥∥
H−α · ∥K∥L1(∥ṽt∥Hα∥∇φ∥L∞ + ∥ṽt∥H2∥∇φ∥Hα),

where we use the Sobolev embedding theorem to get the last inequality.

Similarly, we have

H2 ⩽
∥∥RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
∥∥
H−α∥∇φ ·K ∗ ṽt∥Hα

≲
∥∥RT (ṽ

N )η̃Nt −RT (ṽ)η̃t
∥∥
H−α · ∥K∥L1(∥ṽt∥Hα∥∇φ∥L∞ + ∥ṽt∥H2∥∇φ∥Hα),

H3 = RT (ṽ
N )
∣∣〈K(−·) ∗ ((ṽNt − ṽt)∇φ), η̃Nt

〉∣∣
⩽ RT (ṽ

N )∥η̃Nt ∥H−α∥K(−·) ∗ ((ṽNt − ṽt)∇φ)∥Hα ,

≲ RT (ṽ
N )∥η̃Nt ∥H−α · ∥K∥L1(∥ṽNt − ṽt∥Hα∥∇φ∥L∞ + ∥ṽNt − ṽt∥H2∥∇φ∥Hα),

and

H4 ⩽ RT (ṽ
N )∥η̃Nt ∥H−α∥∇φ ·K ∗ (ṽNt − ṽt)∥Hα .

≲ RT (ṽ
N )∥η̃Nt ∥H−α · ∥K∥L1(∥ṽNt − ṽt∥Hα∥∇φ∥L∞ + ∥ṽNt − ṽt∥H2∥∇φ∥Hα).

Next, we substitute these estimates into equation (4.9) with α = 2 and apply Hölder’s inequality
multiple times to obtain

Ẽ
√
JN
2 (φ) ≲φ ∥K∥

1
2

L1Ẽ
[ ∫ T

0

RT (ṽ
N )∥η̃Nt ∥H−2∥ṽNt − ṽt∥H2dt

] 1
2

+ ∥K∥
1
2

L1Ẽ
[

sup
t∈[0,T ]

∥ṽt∥H2

∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t∥H−2dt

] 1
2

≲φ ∥K∥
1
2

L1Ẽ
([ ∫ T

0

RT (ṽ
N )∥η̃Nt ∥2H−2dt

] 1
4
[ ∫ T

0

∥ṽNt − ṽt∥2H2dt
] 1

4
)

+ ∥K∥
1
2

L1

[
Ẽ sup
t∈[0,T ]

∥ṽt∥H2

] 1
2
[
Ẽ
∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

∥∥
H−2dt

] 1
2

≲φ ∥K∥
1
2

L1

[
T sup

t∈[0,T ]

ẼRT (ṽ
N )∥η̃Nt ∥2H−2

] 1
4
[
Ẽ
[ ∫ T

0

∥ṽNt − ṽt∥2H2dt
] 1

2
] 1

2

+ ∥K∥
1
2

L1

[
Ẽ sup
t∈[0,T ]

∥ṽt∥H2

] 1
2
[
Ẽ
∫ T

0

∥∥RT (ṽ
N )η̃Nt −RT (ṽ)η̃t

∥∥
H−2dt

] 1
2

.

(4.11)
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Observe that

Ẽ
[ ∫ T

0

∥ṽt∥2H2dt
]
≲ sup

N
Ẽ
[ ∫ T

0

∥ṽNt ∥2H2dt
]
= E

[ ∫ T

0

∥vt∥2H2dt
]
< ∞,

which establishes the uniform integrability of[ ∫ T

0

∥ṽNt − ṽt∥2H2dt
] 1

2

.

Therefore, the convergence of ∫ T

0

∥ṽNt − ṽt∥2H2dt, P̃− a.s.

together with Corollary 3.2, leads to the convergence of the first term in (4.11) to 0. Since supt∈[0,T ] ∥ ·
∥H2 is lower semi-continuous on V = C([0, T ];L2(T2)) ∩ L2([0, T ];H4(T2)), by Fatou’s Lemma, we
have

Ẽ sup
t∈[0,T ]

∥ṽt∥H2 ⩽ lim inf
N→∞

Ẽ sup
t∈[0,T ]

∥ṽNt ∥H2 = E sup
t∈[0,T ]

∥vt∥H2 < ∞. (4.12)

Thus, the second term in (4.11) converges to 0 by Lemma 4.3, completing the proof of the first claim.

Furthermore, the first claim implies that there exists a subsequence {Nk}k⩾1 ( still denoted by
{N}N∈N for simplicity) such that∫ t

0

RT (ṽ
N )K̃N

s (φ)−RT (ṽ)⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds N→∞−−−−→ 0, ∀t ∈ [0, T ], P̃− a.s..

Since R−1
T (ṽN ) = m exp{

∫ T

0
m∥ṽNs ∥2H4ds} converges to R−1

T (ṽ) = m exp{
∫ T

0
m∥ṽs∥2H4ds}, P̃-a.s., we

then conclude that∫ t

0

K̃N
s (φ)− ⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds N→∞−−−−→ 0, ∀t ∈ [0, T ], P̃− a.s..

This completes the proof. □

Now, we are in the position to establish the following existence result, using the martingale approach
as in [HRvR17, DHR21].

Theorem 4.5.
(
Ω̃, F̃ , (F̃t)t∈[0,T ], P̃,

(
η̃t,M̃t, W̃t

)
t∈[0,T ]

)
is a probabilistically weak solution to the

fluctuation SPDE (1.11).

Firstly, we establish the convergence of the drift terms. As a consequence of Proposition 3.9, for
every φ ∈ C∞, it holds P̃-a.s. that for ∀t ∈ [0, T ],(

⟨M̃N
t , φ)⟩, ⟨η̃Nt , φ⟩, ⟨η̃N0 , φ⟩,

∫ t

0

⟨∆φ, η̃Ns ⟩ds, 1
2

∫ t

0

〈
σ · ∇

(
σ · ∇φ

)
, η̃Ns

〉
ds

)
converges to (

⟨M̃t, φ⟩, ⟨η̃t, φ⟩, ⟨η̃0, φ⟩,
∫ t

0

⟨∆φ, η̃s⟩ds,
1

2

∫ t

0

〈
σ · ∇

(
σ · ∇φ

)
, η̃s

〉
ds

)
.

Furthermore, recall Lemma 4.4, there exists a subsequence {Nk}k⩾1 ( still denoted by {N}N∈N for
simplicity) such that∫ t

0

K̃N
s (φ)− ⟨ṽsK ∗ η̃s + η̃sK ∗ ṽs,∇φ⟩ds N→∞−−−−→ 0, ∀t ∈ [0, T ], P̃− a.s..

We then identify ṽ is the unique probabilistically strong solution to the mean field limit equation
(1.5).
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Proposition 4.6. The process {W̃t, t ∈ [0, T ]} is a 1-dimensional (F̃t)t∈[0,T ] Brownian motion. More-
over, ṽ is the unique probabilistically strong solution to the mean field limit equation (1.5), in the sense
defined by Definition 2.2 and 2.3.

Proof. For 0 ⩽ s < t ⩽ T, let γ : Hs → R be a bounded and continuous function, where

Hs :=C([0, s];L2)× ∩k∈NC([0, s];H−3− 1
k )

× ∩k∈NC([0, s];H−2− 1
k )× C([0, s];R).

We will use the abbreviations

γN :=γ
(
v[0,s], η

N
[0,s],M

N
[0,s],W[0,s]

)
,

γ̃N :=γ
(
ṽN[0,s], η̃

N
[0,s],M̃

N
[0,s], W̃

N
[0,s]

)
,

γ̃ :=γ
(
ṽ[0,s], η̃[0,s],M̃[0,s], W̃[0,s]

)
.

(4.13)

Since the joint law of (ṽN , η̃N ,M̃N , W̃N ) coincides with the joint law of (v, ηN ,MN ,W ), we infer
that

Ẽ
(
γ̃N
(
W̃N (t)− W̃N (s)

))
=E

(
γN (W (t)−W (s))

)
= 0,

Ẽ
(
γ̃NW̃N (t)W̃N (t)

)
− Ẽ

(
γ̃NW̃N (s)W̃N (s)

)
=E

(
γNW (t)W (t)

)
− E

(
γNW (s)W (s)

)
= t− s.

(4.14)

Using Burkholder-Davis-Gundy inequality for W, we obtain the following uniform bound

Ẽ|W̃N (t)|3 = E|W (t)|3 ⩽ Ct
3
2 , ∀N ∈ N,

which provides the uniform integrability of the above terms. We thus can pass to the limit in the
equations (4.14) and infer

Ẽ
(
γ̃
(
W̃ (t)− W̃ (s)

))
= 0,

Ẽ
(
γ̃W̃ (t)W̃ (t)

)
− Ẽ

(
γ̃W̃ (s)W̃ (s)

)
= (t− s) .

(4.15)

This implies that {W̃t, t ∈ [0, T ]} is a square-integrable (F̃t)t∈[0,T ]-martingale with (F̃t)t∈[0,T ]-quadratic

variation
[
W,W

]
t
= t. By the Lévy martingale characterization theorem, we conclude that W̃ is a

(F̃t)t∈[0,T ] 1-dimensional Brownian motion.

Furthermore, as a consequence of Proposition 3.9, it holds P̃-a.s. that (ṽN , W̃N ) with the same
law L(v,W ), where v is the unique probabilistically strong solution to the mean field limit equation

(1.5) on the previous stochastic basis (Ω,F , (FW
t )t∈[0,T ],P,W ), converges to (ṽ, W̃ ) in the space

C([0, T ];L2) ∩ L2([0, T ];H4), P̃-a.s.. This implies that L(ṽ, W̃ ) = L(v,W ). Since we have established

that W̃ is (F̃t)t∈[0,T ]-1-dimensional Brownian motion and given the well-posedness of the mean field
limit equation (1.5) in Lemma 2.9, we conclude that ṽ is the unique probabilistically strong solution
to (1.5). □

We now proceed to handle the transport noise term σ · ∇η̃tdW̃t, using the approach in [HRvR17].
For φ ∈ C∞, let’s define

Z̃· :=⟨η̃·, φ⟩ − ⟨η̃0, φ⟩ −
∫ ·

0

⟨∆φ, η̃s⟩ds−
∫ ·

0

⟨∇φ, vsK ∗ η̃s⟩ds−
∫ ·

0

⟨∇φ, η̃sK ∗ vs⟩ds

−M·(φ)−
1

2

∫ ·

0

〈
σ · ∇

(
σ · ∇φ

)
, η̃s

〉
ds.
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(We do the same constructions to define Z̃N , ZN for η̃N , ηN ).

Proposition 4.7. The processes

Z̃, Z̃2 −
∫ t

0

⟨σ · ∇φ, η̃s⟩2 ds, Z̃W̃ −
∫ t

0

⟨σ · ∇φ, η̃s⟩ds,

indexed by t ∈ [0, T ], are (F̃t)t∈[0,T ]−local-martingale.

Proof. We recall the following notations. For 0 ⩽ s < t ⩽ T, γ : Hs → R denote a bounded and
continuous function, where

Hs :=C([0, s];L2)× ∩k∈NC([0, s];H−3− 1
k )

× ∩k∈NC([0, s];H−2− 1
k )× C([0, s];R).

We introduce the following abbreviations.

γN :=γ
(
v[0,s], η

N
[0,s],M

N
[0,s],W[0,s]

)
,

γ̃N :=γ
(
ṽN[0,s], η̃

N
[0,s],M̃

N
[0,s], W̃

N
[0,s]

)
,

γ̃ :=γ
(
ṽ[0,s], η̃[0,s],M̃[0,s], W̃[0,s]

)
.

Let M > 0 and define

ϑM := C([0, T ];R) → [0, T ], f → inf{t > 0; |f(t)| ⩾ M}

(with the convention inf ∅ = T ). Choosing α0 = 7
2 and noting that η̃N belongs to C([0, T ];H−α0), we

then deduce that for every N ∈ N, ϑM (ĨN ) defines an (F̃t)t∈[0,T ]-stopping time and the blow up does
not occur in a finite time, i.e.

sup
M>0

ϑM (ĨN ) = T P̃− a.s., (4.16)

where ĨN (t) := sups∈[0,t] ∥η̃N∥H−α0 . The same is valid for the case Ĩ(t) := sups∈[0,t] ∥η̃∥H−α0 . The

stopping times ϑM (Ĩ) will play the role of a localizing sequence for the processes

Z̃, Z̃2 −
∫ t

0

⟨σ · ∇φ, η̃s⟩2 ds, Z̃W̃ −
∫ t

0

⟨σ · ∇φ, η̃s⟩ds.

Due to the observation made in [HS13, Lemma 3.5, Lemma 3.6], there exists a sequence {Mn} → ∞
such that

P̃
(
ϑMn

(·) is continuous at Ĩ
)
= 1.

Consequencely, we establish the convergence of stopping times, that is, for fixed n ∈ N,

ϑMn(Ĩ
N )

N→∞−−−−→ ϑMn(Ĩ), P̃− a.s..

Since the joint law of (ṽN , η̃N ,M̃N , W̃N ) coincides with the joint law of (v, ηN ,MN ,W ), we then
have for every n ∈ N and 0 ⩽ s < t ⩽ T,

Ẽ
[
γ̃N Z̃N (t ∧ ϑMn

(ĨN ))
]
= Ẽ

[
γ̃N Z̃N (s ∧ ϑMn

(ĨN ))
]
,

Ẽ
[
γ̃N
(
(Z̃N (t ∧ ϑMn

(ĨN ))2 −
∫ t∧ϑMn (ĨN )

0

〈
σ · ∇φ, η̃Nr

〉2
dr
)]

=Ẽ
[
γ̃N
(
(Z̃N (s ∧ τMn

(ĨN )))2 −
∫ s∧τMn (ĨN )

0

〈
σ · ∇φ, η̃Nr

〉2
dr
)]

,
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and

Ẽ
[
γ̃N
(
W̃N (t ∧ ϑMn

(ĨN ))Z̃N (t ∧ ϑMn
(ĨN ))−

∫ t∧ϑMn (ĨN )

0

〈
σ · ∇φ, η̃Nr

〉
dr
)]

=Ẽ
[
γ̃N
(
W̃N (s ∧ ϑMn

(ĨN ))Z̃N (s ∧ ϑMn
(ĨN ))−

∫ s∧ϑMn (ĨN )

0

〈
σ · ∇φ, η̃Nr

〉
dr
)]

.

The Burkholder-Davis-Gundy’s inequality for Z̃N (t ∧ ϑMn
(ĨN )) yields the uniform bound

Ẽ
∣∣Z̃N (t ∧ ϑMn

(ĨN ))
∣∣4 = E

∣∣ ∫ t∧ϑMn (IN )

0

〈
σ · ∇φ, η̃Nr

〉
dWr

∣∣4
⩽ E

∣∣ ∫ t∧ϑMn (IN )

0

〈
σ · ∇φ, η̃Nr

〉2
dr
∣∣2 ⩽ CMn

, ∀N ∈ N,

which provide the necessary uniform integrability. We thus can pass the limit in equations and infer

Ẽ
[
γ̃Z̃(t ∧ ϑMn

(Ĩ))
]
= Ẽ

[
γ̃Z̃(s ∧ ϑMn

(Ĩ))
]
,

Ẽ
[
γ̃
(
Z̃2(t ∧ ϑMn

(Ĩ))−
∫ t∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩2 dr
)]

=Ẽ
[
γ̃
(
Z̃2(s ∧ ϑMn

(Ĩ))−
∫ s∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩2 dr
)]

,

and

Ẽ
[
γ̃
(
W̃ (t ∧ ϑMn(Ĩ))Z̃(t ∧ ϑMn(Ĩ))−

∫ t∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩dr
)]

=Ẽ
[
γ̃
(
W̃ (s ∧ ϑMn

(Ĩ))Z̃(s ∧ ϑMn
(Ĩ))−

∫ s∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩dr
)]

.

Therefore, for every n ∈ N,

Z̃(· ∧ ϑMn
(Ĩ)),

Z̃2(· ∧ ϑMn(Ĩ))−
∫ ·∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩2 dr,

W̃ (· ∧ ϑMn
(Ĩ))Z̃(· ∧ ϑMn

(Ĩ))−
∫ ·∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩dr,

are (F̃t)t∈[0,T ]−martingales, which completes the proof. □

Proof of Theorem 4.5. Having Proposition 4.6 and Proposition 4.7 in hand, we can directly calculate[
Z̃(· ∧ ϑMn

(Ĩ))−
∫ ·∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩dWr, Z̃(· ∧ ϑMn
(Ĩ))−

∫ ·∧ϑMn (Ĩ)

0

⟨σ · ∇φ, η̃r⟩dWr

]
t
= 0

for every n ∈ N. Let’s n → ∞, the fluctuation SPDE (2.5) holds. Combining the results of Lemma
4.2 and Proposition 4.6, we complete the proof. □

4.2. Uniqueness. In this subsection, we demonstrate pathwise uniqueness for the fluctuation SPDE
(1.11) and complete the proof of our main results, Theorem 1.2 and Theorem 1.1.

Theorem 4.8. Pathwise uniqueness holds true for the fluctuation SPDE (1.11) in the sense of De-
ifinition (2.7).
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Proof. Let Wt, t ∈ [0, T ] be a 1-dimensional Brownian motion and stochastic process (Mt)t∈[0,T ] takes

values in
⋂

k∈N C([0, T ];H−2− 1
k (Td)), both defined on the same stochastic basis (Ω,F , (Gt)t∈[0,T ],P).

Suppose further that (
Ω,F , (Gt)t∈[0,T ],P,

(
ηit,Mt,Wt

)
t∈[0,T ]

)
i=1,2

are probabilistically weak solution to (1.11) with the same initial data η0. We define η̄ := η1 − η2 and
obtain that ∀φ ∈ C∞(T2),

⟨η̄t, φ⟩ =
∫ t

0

⟨∆φ, η̄s⟩ds+
∫ t

0

⟨∇φ, vsK ∗ η̄s⟩ds+
∫ t

0

⟨∇φ, η̄sK ∗ vs⟩ds

+
1

2

∫ t

0

〈
σ · ∇

(
σ · ∇φ

)
, η̄s

〉
ds+

∫ t

0

⟨σ · ∇φ, η̄s⟩dWs, ∀t ∈ [0, T ],P− a.s..

Then, we evolve |⟨η̄·, φ⟩|2 for each ek of the Fourier basis {ek := e
√
−1k·x, k ∈ Z2}, using Itô’s formula.

d | ⟨η̄t, ek⟩ |2 = ⟨η̄t, ek⟩
[
⟨∆e−k, η̄t⟩+ ⟨∇e−k, vtK ∗ η̄t⟩

+ ⟨∇e−k, η̄tK ∗ vt⟩+
1

2

〈
σ · ∇

(
σ · ∇e−k

)
, η̄t

〉 ]
dt

+ ⟨η̄t, e−k⟩
[
⟨∆ek, η̄t⟩+ ⟨∇ek, vtK ∗ η̄t⟩

+ ⟨∇ek, η̄tK ∗ vt⟩+
1

2

〈
σ · ∇

(
σ · ∇ek

)
, η̄t

〉 ]
dt

+ ⟨η̄t, e−k⟩ ⟨σ · ∇ek, η̄t⟩dWt + ⟨η̄t, ek⟩ ⟨σ · ∇e−k, η̄t⟩dWt

+ ⟨σ · ∇e−k, η̄t⟩ ⟨σ · ∇ek, η̄t⟩dt.

For fixed 3 > α > 2, we now sum (1 + |k|2)−α−1 | ⟨η̄t, ek⟩ |2 over k ∈ Z2, and obtain

∥η̄t∥2H−α−1 =

3∑
i=1

Ji(t) + Lt,

where

J1(t) := −2

∫ t

0

∑
k∈Z2

|k|2(1 + |k|2)−α−1 | ⟨η̄s, ek⟩ |2 ds,

J2(t) :=
∑
k∈Z2

(1 + |k|2)−α−1

∫ t

0

⟨η̄s, e−k⟩
[√

−1k · ⟨K ∗ η̄svs, ek⟩

+
√
−1k · ⟨K ∗ vsη̄s, ek⟩

]
+ ⟨η̄s, ek⟩

[
−

√
−1k · ⟨K ∗ η̄svs, e−k⟩

−
√
−1k · ⟨K ∗ vsη̄s, e−k⟩

]
ds,

J3(t) :=

∫ t

0

∥σ · ∇η̄s∥2H−α−1 + ⟨σ · ∇(σ · ∇η̄s), η̄s⟩H−α−1 ds,

and Lt :=
∫ t

0
⟨σ · ∇η̄s, η̄s⟩H−α−1 dWs is a continuous local martingale.

Applying Young’s inequality, we find for every ε > 0, there exists a constant Cε such that∫ t

0

√
−1k · ⟨η̄s, e−k⟩⟨K ∗ η̄svs, ek⟩ds ⩽ ε

∫ t

0

|k|2|⟨η̄s, e−k⟩|2ds+ Cε

∫ t

0

|⟨K ∗ η̄svs, ek⟩|2ds.

Consequently, we have ∫ t

0

∑
k∈Z2

(1 + |k|2)−α−1
√
−1k · ⟨η̄s, e−k⟩⟨K ∗ η̄svs, ek⟩ds
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⩽ ε

∫ t

0

∥ηs∥2H−αds+ Cε

∫ t

0

∥K ∗ η̄svs∥2H−α−1ds.

By Lemma 2.12, Lemma 2.13 and [BFH18, Theorem A.1.3], for 2 < α < 3, we know

∥K ∗ η̄svs∥H−α−1 ⩽ ∥K ∗ η̄svs∥H−α

≲ ∥K ∗ η̄s∥H−α∥vs∥H4

= ∥∇⊥(−∆)−1η̄s∥H−α∥vs∥H4

≲ ∥η̄s∥H−α−1∥vs∥H4 .

Here we used the fact Biot-Savart kernel K = ∇⊥G, where G is the Green function of −∆ on torus,
as given in [FGP11]. We thus conclude that∫ t

0

∑
k∈Zd

(1 + |k|2)−α−1
√
−1k · ⟨η̄s, e−k⟩⟨K ∗ η̄svs, ek⟩ds ⩽ ε

∫ t

0

∥ηs∥2H−αds+ Cε

∫ t

0

∥vs∥2H4∥η̄∥2H−α−1ds.

The other three terms in J2(t) can be controlled in a similar way. We then obtain that for every ε > 0,
there exists a constant Cε such that for 2 < α < 3,

J2(t) ⩽ ε

∫ t

0

∥ηs∥2H−αds+ Cε

∫ t

0

∥vs∥2H4∥η̄∥2H−α−1ds.

Choosing ε < 2, we conclude that for 2 < α < 3,

J1(t) + J2(t) = −2

∫ t

0

∑
k∈Z2

(1 + |k|2)−α | ⟨η̄s, ek⟩ |2 ds+ 2

∫ t

0

∑
k∈Z2

(1 + |k|2)−α−1 | ⟨η̄s, ek⟩ |2 ds+ J2(t)

⩽ (ε− 2)

∫ t

0

∥ηs∥2H−αds+ Cε

∫ t

0

∥vs∥2H4∥η̄∥2H−α−1ds+ 2

∫ t

0

∥η̄∥2H−α−1ds

≲
∫ t

0

(∥vs∥2H4 + 1)∥η̄∥2H−α−1ds.

Furthermore, applying [Kry15, Lemma 2.3 ] about commutator estimate yields

J3(t) ⩽ Cσ

∫ t

0

∥η̄∥2H−α−1ds.

Consequently, we finally have

∥η̄t∥2H−α−1 ≲
∫ t

0

(∥vs∥2H4 + 1)∥η̄∥2H−α−1ds+ Lt.

Using stochastic Gronwall’s inequality in [Gei21, Corollary 5.4], we have supt∈[0,T ] ∥η̄t∥2H−α−1 = 0 P-
a.s.. The proof is then completed. □

Proof of Theorem 1.1. Having established the existence of probabilistically weak solution to the fluc-
tuation SPDE (1.11) and the pathwise uniqueness for the fluctuation SPDE (1.11) given in Theorem
4.5 and Theorem 4.8 in hand, we apply the general Yamada-Watanabe theorem [Kur14, Theorem 1.5]
to conclude the well-posedness of (1.11). We have shown in Lemma 3.8 that the sequence of laws of
{ηN}N∈N is tight, and in Theorem 4.5 that every limiting point is a probabilistically weak solution to
(1.11). Through the well-posedness of (1.11) and general Yamada-Watanabe theorem [Kur14, Theo-
rem 1.5], we then conclude that every limiting point is the unique probabilistically strong solution to
(1.11) and the law of every limiting point is unique. This establishes the convergence of the fluctuation
measures (ηN )N⩾1 to the fluctuation SPDE (1.11), completing the proof.

□
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