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ABSTRACT. In this work, we study a class of stationary mean-field games of singular stochastic con-
trol under model uncertainty. The representative agent adjusts the dynamics of an Itô-diffusion via one-
sided singular stochastic control, aiming to maximize a long-term average expected profit criterion. The
mean-field interaction is of scalar type through the stationary distribution of the population. Due to the
presence of uncertainty, the problem involves the study of a stochastic (zero-sum) game, where the de-
cision maker chooses the ‘best’ singular control policy, while the adversarial player selects the ‘worst’
probability measure. Using a constructive approach, we prove existence and uniqueness of a station-
ary mean-field equilibrium. Finally, we present an example of mean-field optimal extraction of natural
resources under uncertainty and we analyze the impact of uncertainty on the mean-field equilibrium.
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1. INTRODUCTION

Mean-field games (MFGs in short) were independently introduced in 2006 by Lasry and Lions [52],
and by Caines et al. [12], as asymptotic models for symmetric N-player differential games. In these
settings, each player’s dynamics and decisions are influenced by the collective behavior of the popula-
tion, typically represented by the empirical distribution of the states (and potentially the actions) of all
players (extended MFGs). The central idea of MFGs is to replace the complex many-player interaction
with the problem of a single representative agent who optimizes her strategy in response to a given flow
of probability measures, reflecting the statistical distribution of the other, indistinguishable agents. The
equilibrium concept in MFGs emerges as a consistency condition: The law of the optimally controlled
state process of the representative agent must coincide with the prescribed flow of distributions. In this
way, the classical Nash equilibrium from the N-player game is replaced by a fixed-point requirement
on the evolution of distributions. Since their introduction, MFGs have garnered substantial attention
in both the mathematical and applied communities. This is due to their analytical tractability, their
deep connections with the theory of propagation of chaos and forward-backward stochastic systems,
and their capacity to approximate εN -Nash equilibria in large, symmetric N-player games. For a
comprehensive treatment of the theory, methodologies, and main results, we refer the reader to the
two-volume monograph by Carmona and Delarue [21]. A detailed overview of applications of MFGs
in fields such as Economics, Finance, and Engineering can be found in the survey by Carmona [20].

In stationary MFGs, the representative player interacts with the long-run distribution of the popu-
lation. Such a concept has a long tradition in economic theory: Stationary equilibria appeared already
in the 1980s in the context of games with a continuum of players (see [44] and [47]), and also play an
important role in the analysis of competitive market models with heterogeneous agents (see, e.g., [1]
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and [54], amongst many others). Closely connected is also the concept of stationary oblivious equi-
libria, introduced by Adlakha et al. in [2]. Within the mathematical literature, stationary MFGs have
been approached both via analytic and probabilistic methods. Among those papers adopting a partial
differential equations (PDE) approach, we refer to the works of Bardi and Feleqi [6] for the study of
the forward-backward system arising in stationary MFGs with regular controls, Gomes et al. [41] for
extended stationary MFGs, Cardaliaguet and Porretta [19] for the study of the long-term behavior of
the master equation arising in MFG theory, and to Bertucci [9] for the study of stationary mean-field
optimal stopping games. On the other hand, a probabilistic approach is followed in a series of recent
contributions dealing with stationary MFGs with singular and impulsive controls, see Aı̈d et al. [3],
Cannerozzi and Ferrari [16], Cao and Guo [18], Cao et al. [17] and Dianetti et. al. [33].

The aforementioned problems are based on the assumption that agents possess complete certainty
regarding the occurrence of system events-that is, the real-world probability measure is perfectly
known to them. However, this assumption is unrealistic, as economic and financial models often in-
volve complex mechanisms and multiple sources of uncertainty. A well-known concept that addresses
this issue is Knightian uncertainty [49] (also referred to as model uncertainty), which describes sit-
uations in which the decision maker has incomplete knowledge about the probabilities of various
outcomes. To account for this, the concept of ambiguity has been introduced, wherein the decision
maker evaluates her objective function by minimizing it over a set of plausible probability measures,
commonly referred to as the set of priors. In this context, Gilboa and Schmeidler [40] proposed the
max-min expected utility framework, in which the agent maximizes expected utility with respect to
the worst-case prior within a suitable set. This approach was further extended by Hansen and Sar-
gent [43], who developed a continuous-time version of the max-min expected utility framework and
explored its connection to robust control theory. Over the past two decades, optimization problems
under model uncertainty have played a significant role in economics and finance. A detailed literature
review falls outside the scope of this paper. We only would like to mention papers that deal with opti-
mal timing and singular control problems under uncertainty. Among these, optimal stopping problems
under ambiguity have been studied by Nutz and Zhang [56], Riedel [61], and Riedel and Cheng [23],
among others. For singular control problems, we refer to the works of Chakraborty et al. [22], Cohen
[26], Cohen et al. [27] Ferrari et. al. [37] and Ferrari et al. [38], while Perninge [57] examines impulse
control problems under model uncertainty.

1.1. Our Results. In this paper, we study a class of stationary MFGs under model uncertainty, where
the underlying state process is a general singularly controlled one-dimensional diffusion. More pre-
cisely, the representative agent optimally controls a real-valued Itô-diffusion through a one-sided sin-
gular control in order to maximize an ergodic reward functional while is uncertain about the real-
world model. To take into account model uncertainty, agent maximizes a long-time-average of the
time-integral of a running profit function, net of the proportional costs of actions under the worst-case
scenario probability measure. The latter can be addressed as a zero-sum game between the agent and
an adverse player (see, for instance, Cohen et. al. [27]). The mean-field interaction is of scalar type
and comes through a real-valued parameter denoted by θ, which, at equilibrium, has to identify with
a suitable generalized moment of the stationary distribution of the optimally controlled state process.
From the economic point of view, θ can be thought of as a stationary price index arising from the
aggregate productivity through an isoelastic demand function à la Spence-Dixit-Stiglitz (see pp. 7-8
in [1]). We refer to Remark 2.2 below for details.

Our first contribution is the solution of the representative player’s optimal control problem. In this
context, we extend the result of Cohen et al. [27] to a setting that includes running profit and state-
dependent proportional cost of control (see Theorem 3.2 below). This is achieved by applying the
shooting method, following an approach similar to that used in [27]. Using a verification argument
(see Proposition 3.1 and Theorem 3.2), we demonstrate that, for a fixed mean-field parameter, θ, the
optimal control is of barrier-type. That is, the optimal control uniquely solves a Skorokhod reflection
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problem (see e.g., Tanaka [63]) at endogenously determined barrier, which depend on the level of
ambiguity and on the given and fixed mean-field parameter θ.

The next step deals with the construction of the MFG equilibrium and with the proof of its unique-
ness. To that end, we first show that the process constituted by the optimally controlled diffusion
process under the worst-case scenario admits a stationary distribution (cf. Proposition 4.2 below) and
the stationary density function has an explicit form (cf. (4.32)). Clearly, the stationary distribution
and its density function depend on the level of ambiguity and fixed mean-field parameter θ, since the
optimally controlled state does. In order to proceed with the equilibrium analysis, we thus study the
stability of the stationary distribution with respect to θ and actually prove its continuity with respect
to such a parameter (cf. Proposition 4.2). Further exploiting the connection to the auxiliary bound-
ary value problem, we are then able to show the monotonicity and the boundedness from below of the
free-boundary with respect to mean-field parameter (cf. Lemmata 4.1 and 4.2 below) and to determine
an invariant compact set where any equilibrium value of θ (if one exists) should lie. Combining those
continuity and compactness results, an application of the Schauder-Tychonof fixed point theorem al-
lows us to prove that there exists a stationary equilibrium (cf. Theorem 4.2), which is then also proved
to be unique.

Finally, we complement our theoretical analysis by a case study arising in the context of optimal
extraction model. Here, we assume that the representative firm extracts from a natural resource which
evolves as an affine diffusion process with mean-reverting drift and the profit function is of power
type. In this setting, we study the sensitivity of equilibria on level of ambiguity and the level of
volatility. Due to the presence of a quadratic term in the variational inequality (cf. (3.5)), the problem
cannot be solved explicitly. Therefore, we develop a policy iteration algorithm (PIA) to approximate
the equilibria.

1.2. Related Literature. Ergodic singular stochastic control problems for one-dimensional diffu-
sions have been treated in general settings, including state-dependent costs of actions, and with differ-
ent applications; see [5], [53], [55] and [46], [50], among others. However, in all those papers, model
uncertainty is not considered.

Our paper is placed within the recent bunch of literature dealing with MFGs with singular controls
by following a probabilistic approach; see Aı̈d et al. [3], Cao and Guo [18], Cao et al. [17], Campi et
al. [15], Cohen and Sun [28], Dianetti et al. [32], Dianetti et. al. [33], Denkert and Horst [31], Fu and
Horst [39], and Guo and Xu [42]. Amongst those, the work that most relates to ours is by Cao et al.
[17]. Cao et al. consider in [17] ergodic MFGs involving a one-dimensional singularly controlled Itô-
diffusion that can be increased via a monotone control process. In contrast to our work, [17] does not
consider model uncertainty. Our paper is also closely related to the works of Chakraborty et al. [22],
Cohen [26], and Cohen et al. [27]. In particular, like these studies, we consider worst-case scenarios
modeled via Kullback-Leibler divergence and employ the shooting method to solve the stochastic
singular control problem, following the approach in [27]. However, these papers do not incorporate a
mean-field game framework.

We also clearly relate to those works dealing with MFGs involving model uncertainty. Huang and
Huang [45] consider mean-field linear-quadratic-Gaussian control under model uncertainty. Bauso et.
al. in [7] focus on robust MFGs and risk-sensitive type MFGs. Furthermore, Langner et. al. [51] study
Markov-Nash equilibrium (discrete time and state space) under model uncertainty.

1.3. Organization of the Paper. The rest of the paper is organized as follows. In Section 2, we
introduce the probabilistic setting and the MFG under study. Next, in Section 3, for a given and fixed
mean-field parameter, we solve the ergodic stochastic control problem faced by the representative
player. In Section 4 we then prove the existence and uniqueness of the mean-field equilibrium, while in
Section 5 we introduce and solve a MFG of optimal extraction. Finally, technical proofs are collected
in Appendix A.
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2. PROBLEM FORMULATION

2.1. Probabilistic setting. Let (Ω,F ,P) be a probability space which satisfies the usual conditions,
on which it is defined a one-dimensional Brownian motion {Wt}t≥0 and denote by F := {FW

t }t≥0

the filtration which is generated by W , as usual augmented by P-null sets of F . Let

(2.1) A := { {ξt}t≥0, F-adapted, nondecreasing, left-continuous and such that ξ0 = 0, a.s. },
and set R := (−∞,∞) and R+ := (0,∞). Then, for given ξ ∈ A and Borel-measurable functions
b : R+ → R, σ : R+ → R+, we introduce the R+-valued process Xξ with dynamics under P

(2.2) dXξ
t = b(Xξ

t )dt+ σ(Xξ
t )dW

P
t − dξt, Xξ

0 = x ∈ R+.

The following assumption ensures, in particular, that there exists a unique strong solution to (2.2)
for every ξ ∈ A and x ∈ R+ (see Theorem 7 Chapter V in [60]). In the following, we shall denote
such a strong solution by Xx,ξ, when needed.

Assumption 2.1. The following hold:
(1) The functions b and σ are continuously differentiable.
(2) There exists C > 0 and ζ > 0, such that

|b(x)|+ |σ(x)| ≤ C(1 + |x|ζ), for any x ∈ R+.

Denoting by X0 the unique strong solution to (2.2) with ξ ≡ 0, Conditions (1) and (2) in As-
sumption 2.1 imply that X0 is regular, meaning that, for any x, y ∈ R+, Px(βy < ∞) > 0, where
βy := inf{t ≥ 0 : X0

t = y}, Px-a.s. For further details see Section II-1 in [10].
For arbitrary x0 > 0, we define the scale function of X0 under P as

(2.3) SP(x) :=

∫ x

x0

SP
x(y)dy with SP

x(x) := exp

(
−
∫ x

x0

2b(x)

σ2(y)
dy

)
, x ∈ R+,

and the speed measure under P

(2.4) mP((x0, x)) :=

∫ x

x0

2

σ2(y)SP
x(y)

dy, x ∈ R+.

We make the following standing assumption, which ensures that 0 is not attainable for X0.

Assumption 2.2. The speed measure m under P of X0 satisfies

(2.5) lim
x0↓0

mP((x0, x)) <∞, for any x ∈ R+.

Remark 2.1. A mean-reverting uncontrolled process X0 with b(x) = α(κ − x) and σ(x) = σx, for
positive κ, α and σ, satisfies Assumption 2.1 and 2.2.

We also define Q to be the set of probability measures on (Ω,F), which are equivalent with respect
to P, i.e. Q := {Q ∈ P(Ω,F) : Q ∼ P}, where P(Ω,F) is the set of probability measures on
(Ω,F) endowed with the weak topology. In the rest of the paper, we adopt the following notation:
Px[·] := P[·|Xξ

0 = x] and EP
x[·] := EP[·|Xξ

0 = x]. Also, for Q ∈ Q, we set Qx[·] := Q[·|Xξ
0 = x] and

EQ
x [·] := EQ

x [·|X
ξ
0 = x].

2.2. The ergodic mean-field game. Within the previous probabilistic setting, we now introduce the
ergodic mean-field game (ergodic MFG for short) which will be the main object of our study. We start
with the definition of admissible controls.

Definition 2.1 (Admissible controls). Let x ∈ R+, p > 1 and q := p
p−1 . We say that ξ ∈ A is

admissible if Xξ
t > 0 for any t ≥ 0, P-a.s.,

(2.6) EP
x

[
ξpT

]
+ EP

x

[
|Xξ

T |
2q
]
+ EP

x

[
exp

(
1

2

∫ T

0
|Xξ

t |4dt
)]

<∞, for any T <∞,
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and if

(2.7) lim sup
T↑∞

1

T
EP
x

[
|Xξ

T |
3
]
= 0.

We denote the set of admissible controls ξ as Ae(x).

The previous technical integrability conditions will be needed in the verification theorem (see The-
orem 3.2 below), when proving optimality of a candidate value and candidate optimal control.

For a Borel-measurable function g : R → R (such that the subsequent quantities are well-posed),
introduce the integral ( cf. [46], [64], among others)

(2.8)
∫ t

0
g(Xξ

s ) ◦ dξs :=
∫ t

0
g(Xξ

s )dξ
c
s +

∑
0≤s≤t

∫ ∆ξs

0
g(Xξ

s − r)dr, t ≥ 0,

where ξc denotes the continuous part of ξ. Then, for any (ξ,Q) ∈ Ae(x)×Q, the profit functional to
be optimized is given by

J ϵ(x; ξ,Q, θ) : = lim inf
T→∞

1

T
EQ
x

[ ∫ T

0
π(Xξ

t , θ)dt−
∫ T

0
c(Xξ

t ) ◦ dξt +
1

ϵ
log

(
dQ
dP

∣∣∣∣
FT

)]
,(2.9)

for ϵ > 0 and θ ∈ R+. In (2.9), π is the instantaneous profit function and c the proportional cost
function satisfying Assumption 2.3 below.

Assumption 2.3. The function π : R2
+ 7→ R+ and c : R+ → R+ are such that:

(1) π(·, θ) ∈ C2(R+), for any θ ∈ R+;
(2) π(·, θ) is non-decreasing and concave, for any θ ∈ R+;
(3) πxθ is continuous and it is such that πxθ(x, θ) < 0, for any (x, θ) ∈ R2

+.
(4) c is continuously differentiable, nonincreasing and bounded, i.e. there exists 0 < c ≤ c < ∞

such that c(x) ∈ [c, c] for any x ∈ R+. In particular, limx↓0 c(x) = c and limx↑∞ c(x) = c.

The parameter ϵ > 0 in (2.9) measures the level of ambiguity that the decision maker has towards
the probabilistic model Q with respect to the reference probabilistic setting associated to P. The
following admissibility conditions clarify the structure of the Radon-Nikodym derivative dQ

dP
∣∣
Ft

in
(2.9) (see also Definition 1 in [27]).

Definition 2.2 (Admissible measures). Let q := p
p−1 for p > 1 as in Definition 2.1. Given x ∈ R+,

we say that Q ∈ Q is admissible if

dQ
dP

(t) :=
dQ
dP

∣∣∣∣
Ft

= exp

(∫ t

0
ψ(Xξ

s )dWs −
1

2

∫ t

0
ψ2(Xξ

s )ds

)
, ξ ∈ Ae(x),

where ψ : R → R is a bounded Borel-measurable locally Lipschitz function such that

(2.10) EP
[
exp

(
1

2

∫ T

0
ψ2(Xξ

s )ds

)]
<∞, ξ ∈ Ae(x), for any T <∞,

(2.11) EP[ψq(Xξ
T )
]
<∞, ξ ∈ Ae(x), for any T <∞,

the scale function of X0 with respect to Q, i.e.

(2.12) SQ
x (x) := exp

(
−

∫ x

c

2(b(y) + ψ(y)σ(y))

σ2(y)
dy

)
, x ∈ R+,

is well-defined.
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In the following analysis, we shall refer to ψt = ψ(Xx,ξ
t ), ξ ∈ Ae(x), as the Girsanov kernel of Q,

and will denote the set of admissible Q as Q̂(x) ⊆ Q. Let then S(x) := Ae(x)× Q̂(x). By choosing
an admissible Q ∈ Q̂(x), and writing for simplicity ψt := ψ(Xx,ξ

t ), ξ ∈ Ae(x), x ∈ R+, we have

EQ
x

[
log

(
dQ
dP

(T )

)]
= EQ

x

[
log

(
exp

(∫ T

0
ψsdWs −

1

2

∫ T

0
ψ2
sds

))]
= EQ

x

[ ∫ T

0
ψsdWs −

1

2

∫ T

0
ψ2
sds

]
= EQ

x

[(∫ T

0
ψs (dWs − ψsds)︸ ︷︷ ︸

=dWQ

+
1

2

∫ T

0
ψ2
sds

)]

= EQ
x

[
1

2

∫ T

0
ψ2
t dt

]
,

so that for (ξ,Q) ∈ S(x) the payoff functional (2.9) rewrites as

(2.13) J ϵ(x; ξ,Q, θ) := lim inf
T→∞

1

T
EQ
x

[ ∫ T

0
π(Xξ

t , θ)dt−
∫ T

0
c(Xξ

t ) ◦ dξt +
1

2ϵ

∫ T

0
ψ2
t dt

]
.

The parameter θ drives the interaction of the representative player with the population (see Definition
2.3 below). Its representation at equilibrium involves the functions F : R+ → R+ and f : R+ → R+

that satisfy the following requirements.

Assumption 2.4. F : R+ → R+, f : R+ → R+ are such that:
(1) F and f are strictly increasing and continuously differentiable functions;
(2) for δ ∈ (0, 1), there exists C > 0 such that:

(a) |f(x)| ≤ C(1 + |x|δ), |F (x)| ≤ C(1 + |x|
1
δ ),

(b)
∣∣F (x)− F (y)

∣∣ ≤ C(1 + |x|+ |y|)
1
δ
−1|x− y|;

(3) limx↑∞ F (x) = limx↑∞ f(x) = ∞.

Remark 2.2. As a benchmark example (see Remark 2.3 below) we may take

(2.14) π(x, θ) = xδ(θ−(1+δ) + η), c(x) = c, f(x) = xδ, and, F (x) = x1/δ

for η > 0, δ ∈ (0, 1), c > 0. In this case, Assumptions 2.3 and 2.4 hold.

The following definition finally introduces the notion of optimality for the considered MFG.

Definition 2.3 (Ergodic MFG Equilibrium). For x ∈ R+ and ϵ > 0, a tuple (ξ∗(θ∗),Q∗(θ∗), θ∗) ∈
S(x)× R+ is said to be an equilibrium of the ergodic MFG for the initial condition x ∈ R+ if

(1) (a) J ϵ(x; ξ∗(θ∗),Q∗(θ∗), θ∗) ≥ J ϵ(x; ξ,Q∗(θ∗), θ∗), for any ξ ∈ Ae(x);
(b) J ϵ(x; ξ∗(θ∗),Q∗(θ∗), θ∗) ≤ J ϵ(x; ξ∗(θ∗),Q, θ∗), for any Q ∈ Q̂(x).

(2) The optimally controlled state process Xξ∗(θ∗) under Q∗(θ∗) admits a stationary distribution
νθ

∗
and the consistency condition θ∗ = F

( ∫
R+
f(x)νθ

∗
(dx)

)
holds true.

In order to solve the ergodic MFG we follow a three-step approach:
(1) For θ ∈ R+, we find ξ∗(θ) and Q∗(θ) satisfying Definition 2.3-(1) (with θ∗ replaced by θ).
(2) We determine the stationary distribution νθ of Xξ∗(θ) under Q∗(θ).
(3) We solve for the fixed-point problem deriving from the consistency condition as in Definition

2.3-(2).

Remark 2.3. The benchmark example of Remark 2.2 relates to a MFG of optimal extraction (see
Section 5 for more details), where: c is the cost associated to the extraction of a resource; π is the
profit accrued from the production of a final good, produced having as input the extracted resource; η
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is a fixed price (in absence of competition); while θ represents the equilibrium stationary price arising
from a competing market where symmetric producing companies face isoelastic demand functions à
la Spence-Dixit-Stiglitz (cf. Section 3 in [1] and Section 2.1 in [13] for a micro-foundation).

3. SOLVING THE ERGODIC ZERO-SUM GAME

Here, for θ ∈ R+ given and fixed, we consider the zero-sum game between a singular controller
acting on ξ ∈ Ae(x) and an adverse player (Nature) choosing Q ∈ Q̂(x). Then, the aim is to determine

(3.1) λϵ(θ) := sup
ξ∈Ae(x)

inf
Q∈Q̂(x)

J ϵ(x; ξ,Q, θ).

Notice that λϵ(θ) is expected to be independent of x given the ergodic setting. In order to tackle (3.1),
we let V ϵ(·, θ) : R+ → R and λϵ(θ) ∈ R+ to be determined such that V ϵ(·, θ) ∈ C2(R+) and the
pair (V ϵ(·, θ), λϵ(θ)) solves the variational inequality

(3.2) max

{
inf
p∈R

{Lp,ϵV ϵ(x, θ) +
1

2ϵ
p2}+ π(x, θ)− λϵ(θ),−V ϵ

x (x, θ)− c(x)

}
= 0, x ∈ R+,

where, for p ∈ R and f ∈ C2(R+),

(3.3) Lp,ϵf(x) := 1

2
σ2(x)fxx(x) + (b(x) + σ(x)p)fx(x).

In the following, V ϵ will be called potential function. It is clear that the infimum with respect to p ∈ R
appearing in (3.2) is attained. Hence, we let

(Lϵf)(x) := inf
p∈R

{Lp,ϵf(x) + 1

2ϵ
p2} =

1

2
σ2(x)fxx(x) + b(x)fx(x)−

ϵ

2
σ2(x)(fx(x))

2,(3.4)

and (3.2) rewrites as

(3.5) max{LϵV ϵ(x, θ) + π(x, θ)− λϵ(θ),−V ϵ
x (x, θ)− c(x)} = 0, x ∈ R+.

For the subsequent analysis, it is important to introduce the function ℓϵ : R+ → R, defined as

(3.6) ℓϵ(x, θ) := −b(x)c(x) + π(x, θ)− 1

2
σ2(x)(ϵc2(x) + cx(x)),

which satisfies the following assumption.

Assumption 3.1. The following hold:

(1) For any ϵ > 0, there exist x̂ϵ(θ) ∈ R+ such that

(3.7) (ℓϵ)x(x, θ)


> 0, x < x̂ϵ(θ)

= 0, x = x̂ϵ(θ)

< 0, x > x̂ϵ(θ).

(2) One has that

(3.8) lim
x↑∞

ℓϵ(x, θ) = −∞ and ℓϵ(0, θ) := lim
x↓0

ℓϵ(x, θ) is finite.

(3) One has that x̂ϵ(θ) := inf{x ≥ x̂ϵ(θ) : ℓ
ϵ(x, θ) = ℓϵ(0, θ)} is finite.

Remark 3.1. The process of Remark 2.1 and the setting of Remark 2.2 are such that Assumption 3.1
is satisfied.
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Remark 3.2. Consider the Verhulst-Pearl logistic model with dynamics

(3.9) dXt = Xt(κ− αXt)dt+ σXtdW
P
t , X0 = x,

where κ, α, σ > 0. It is clear that Assumption 2.1 is satisfied and, moreover, one can check that
Assumption 2.2 is valid. However, for the running profit π and proportional cost c as specified in
Remark 2.2, it follows that Assumptions 3.7 holds only if condition 2α− ϵσ2c < 0 is satisfied.

3.1. Existence of a solution to (3.5). To prove existence and uniqueness of a classical solution to
(3.5), we follow the shooting method as in [27] (see also Section 7.3 in [62]). To that end, for arbitrarily
fixed β ∈ R+ and γ ∈ R, we introduce the following auxiliary boundary-value problem for ϕγβ(·, θ) :
R+ → R:
(3.10){

1
2σ

2(x)(ϕγβ)x(x, θ) + b(x)ϕγβ(x, θ)−
ϵ
2σ

2(x)(ϕγβ)
2(x, θ) = ℓϵ(β, θ)− π(x, θ) + γ, x < β,

ϕγβ(x, θ) = −c(x), x ≥ β.

Proposition 3.1 (Regular solution to (3.10)). For fixed β ∈ R+ and γ ∈ R, the boundary-value
problem (3.10) has a unique solution ϕγβ(·, θ) ∈ C1(R+), for any θ ∈ R+.

Proof. To prove that problem (3.10) has a unique regular solution, we borrow the argument of Section
4.2 in [27]. We introduce the function f : R → R such that f(x, θ) := − log (y(x,θ))

ϵ , where y(·, θ) :
R+ → R+ solves

(3.11)

{
1
2σ

2(x)yxx(x, θ) + b(x)yx(x, θ) + (ℓϵ(β, θ)− π(x, θ) + γ)ϵy(x, θ) = 0, x ∈ (0, β)

y(x, θ) = 1
c(x) , yx(x, θ) = ϵ, x ≥ β.

Hence, fx(x) solves (3.10). In (3.11), all the coefficient are continuous due to the Assumptions (2.1)
and (2.3). Hence, by Theorem 3.6.2 in [25], there exists a unique regular solution on [α,∞), for
every α ∈ (0, β). Since the Cole-Hopf transformation is one-to-one and onto we obtain existence and
uniqueness of a solution as in the claim. □

Lemma 3.1 (Perturbation of (3.10)). For any β ∈ R+, there exists C := C(β) such that,

(3.12) sup
x∈(0,β]

∣∣ϕγβ(x, θ)− ϕ0β(x, θ)
∣∣ ≤ C|γ|, for sufficient small γ ∈ R.

Proof. The proof follows arguments completely similar to those employed in the proof of Lemma 2
in [27] and it is therefore omitted. □

In the sequel, we write ϕβ for ϕ0β , and recall that ϕβ(·, θ) ∈ C1(R+) by Proposition 3.1. To proceed,
we then define

(3.13) Bϵ(θ) := {β ∈ R+|ϕβ(x, θ) ≥ −c(x), x ∈ (0, β]}, βϵ(θ) := inf Bϵ(θ),

and we have the following result on the structure of the problem’s state space.

Proposition 3.2. The following hold:
(1) (0, x̂ϵ(θ)] ∩Bϵ(θ) = ∅;
(2) x̂ϵ(θ) ∈ Bϵ(θ);
(3) x̂ϵ(θ) ≤ βϵ(θ) ≤ x̂ϵ(θ).

Proof. Proof of (1): Fix β ∈ (0, x̂ϵ(θ)] and γ > 0. We define the function F γβ (x, θ) := ϕγβ(x, θ)+c(x)

and, since for x = β we have ϕγβ(β, θ) = −c(β), it holds F γβ (β, θ) = 0. We then plug x = β in (3.10)
and obtain that

1

2
σ2(β)(ϕγβ)x(β, θ) = ℓϵ(β, θ)−

(
b(β)ϕγβ(β, θ)−

1

2
σ2(β)(ϕγβ)

2(β, θ) + π(β, θ)
)
+ γ;
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equivalently,

1

2
σ2(β)∂x(ϕ

γ
β(·, θ) + c(·))(β) = ℓϵ(β, θ)

−
(
− b(β)c(β) + π(β, θ)− 1

2
σ2(β)

(
ϵc2(β) + cx(β)

))
︸ ︷︷ ︸

=ℓϵ(β,θ)

+γ,

that is,

1

2
σ2(β)(F γβ )x(β) = ℓϵ(β, θ)− ℓϵ(β, θ) + γ = γ > 0.

This implies that (F γβ )x(β, θ) > 0. Arguing by contradiction, we want to show that for any x ∈ (0, β)

we have that F γβ (x, θ) < 0, which, thanks to Lemma 3.1, in turn allows to conclude that Fβ(x, θ) ≤ 0

for x ≤ β; that is, ϕβ(x, θ) ≤ −c(x) for x ≤ β. Hence, we assume that there exists x0(θ) :=
max{x ∈ (0, β) : ϕγβ(x, θ) = −c(x)}. Then,

1

2
σ2(x0(θ))(ϕ

γ
β)x(x0(θ)) + b(x0(θ))ϕ

γ
β(x0(θ))−

ϵ

2
σ2(x0(θ))(ϕ

γ
β)

2(x0(θ)) + π(x0(θ))

= ℓϵ(β, θ) + γ,

which, rearranging terms, yields

1

2
σ2(x0(θ))∂x(ϕ

γ
β(·, θ) + c(·))(x0(θ)) = ℓϵ(β, θ)

−
(
− b(x0(θ))c(x0(θ)) + π(x0(θ), θ)−

1

2
σ2(x0)

(
ϵc2(x0(θ)) + cx(x0(θ))

))
︸ ︷︷ ︸

=ℓϵ(x0(θ),θ)

+γ.

Hence, thanks to (3.7) in Assumption 3.1,

1

2
σ2(x0(θ))(F

γ
β )x(x0(θ), θ) =

(
ℓϵ(β, θ)− ℓϵ(x0(θ), θ)

)︸ ︷︷ ︸
>0

+γ > 0,

so that (F γβ )x(x0(θ), θ) > 0, which contradicts Lemma A.1.

Proof of (2): As in the previous step, we define F γx̂ϵ(θ)(x, θ) := ϕγx̂ϵ(θ)
(x, θ) + c(x). For γ < 0,

we plug x = x̂ϵ(θ) into the (3.10). Then, using the fact that ϕγx̂ϵ(x̂ϵ(θ), θ) = −c(x̂ϵ(θ)), which yields
F γx̂ϵ(θ)

(x̂ϵ(θ), θ) = 0, following the same arguments of Step 1 above we obtain

1

2
σ2(x̂ϵ(θ))(F

γ
x̂ϵ(θ)

)x(x̂ϵ(θ), θ) = γ < 0,

which implies that (F γx̂ϵ(θ))x(x̂ϵ(θ)) < 0. We want to show that for any x ∈ (0, x̂ϵ(θ)) we have
ϕγx̂ϵ(θ)

(x, θ) > −c(x), so to conclude by Lemma 3.1 that ϕx̂ϵ(θ)(x, θ) ≥ −c(x), x ∈ (0, x̂ϵ(θ)).
We argue again by contradiction and assume that there exists x1(θ) := max{x ∈ (0, x̂ϵ(θ)) :

ϕγx̂ϵ(θ)
(x, θ) = −c(x)} = max{x ∈ (0, x̂ϵ(θ)) : F

γ
x̂ϵ(θ)

(x, θ) = 0}. Hence, feeding x = x1(θ) into
(3.10) we have

1

2
σ2(x1(θ))(ϕ

γ
x̂ϵ(θ)

)x(x1(θ)) + b(x1(θ))ϕ
γ
x̂ϵ(θ)

(x1(θ))

− ϵ

2
σ2(x1(θ))(ϕ

γ
x̂ϵ(θ)

)2(x1(θ)) + π(x1(θ)) = ℓϵ(x̂ϵ(θ), θ) + γ.
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Rearranging the terms we find that

1

2
σ2(x1(θ))∂x(ϕ

γ
x̂ϵ(θ)

(·, θ) + c(·))x(x1(θ)) = ℓϵ(x̂ϵ(θ), θ)

−
(
− b(x1(θ))c(x1(θ)) + π(x1(θ), θ)−

1

2
σ2(x1(θ))

(
ϵc2(x1(θ)) + cx(x1(θ))

))
︸ ︷︷ ︸

=ℓϵ(x1(θ),θ)

+γ;

that is,
1

2
σ2(x1(θ))(F

γ
x̂ϵ(θ)

)x(x1(θ)) = ℓϵ(x̂ϵ(θ), θ)− ℓϵ(x1(θ), θ) + γ < 0,

where the last inequality comes from Assumption 3.1-(3.7). Hence, (F γx̂ϵ(θ))x(x1(θ)) < 0, which
contradicts Lemma A.1.

Proof of (3): This follows from the previous steps. □

We also have the following result on the boundedness of ϕβϵ(θ).

Proposition 3.3 (Uniform boundedness of ϕβϵ(θ)(x, θ)). For any θ ∈ R+, there existsM(θ) > 0 such
that

∣∣ϕβϵ(θ)(x, θ)∣∣ ≤M(θ), for any x ∈ [0,∞).

Proof. Let arbitrarily fixed θ ∈ R+. In the sequel, we denote for simplicity ϕβϵ(θ)(·, θ) by ϕ(·, θ).
Given that ϕβϵ(θ)(x, θ) = −c(x) for x ∈ [βϵ(θ),∞) and c is bounded, it suffices to consider x ∈
(0, βϵ(θ)]. We then have on (0, βϵ(θ))

d

dx

(
ϕ(x, θ) exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

))
(3.14)

=

(
ϕx(x, θ) +

2b(x)

σ2(x)
ϕ(x, θ)

)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
=

(
2

σ2(x)
λϵ(θ)− 2π(x, θ)

σ2(x)
+

2b(x)

σ2(x)
ϕ(x, θ) + ϵϕ2(x, θ)

+
2b(x)

σ2(x)
ϕ(x, θ)

)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
=

(
2

σ2(x)
λϵ(θ)− 2π(x, θ)

σ2(x)
+ ϵϕ2(x, θ)

)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
,

where in second equation we have used (3.10) for β = βϵ(θ) and γ = 0. Then, for x0 < βϵ(θ),
we integrate (3.14) from x0 to βϵ(θ) and exploiting monotonicity of x 7→ π(x, θ) (cf. Assumption
2.3-(2)) we obtain∫ βϵ(θ)

x0

d

dx

(
ϕ(x, θ) exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

))
≥

(
λϵ(θ)− π(βϵ(θ), θ)

) ∫ βϵ(θ)

x0

2

σ2(x)
exp

(
−

∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
dx.(3.15)

By applying condition ϕ(βϵ(θ), θ) = −c(βϵ(θ)) < 0, we get

−c(βϵ(θ))− ϕ(x0, θ) exp

(
−
∫ βϵ(θ)

x0

2b(y)

σ2(y)
dy

)
≥

(
λϵ(θ)− π(βϵ(θ), θ)

) ∫ βϵ(θ)

x0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
dx;(3.16)
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equivalently,

ϕ(x, θ) ≤ exp

(∫ βϵ(θ)

x0

2b(y)

σ2(y)
dy

)(
− c(βϵ(θ))

+
(
π(βϵ(θ), θ)− λϵ(θ)

) ∫ βϵ(θ)

x0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
dx

)
≤

(
|λϵ(θ)|+ π(βϵ(θ), θ)

)
exp

(∫ βϵ(θ)

x0

2b(y)

σ2(y)
dy

)∫ βϵ(θ)

x0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(y)

σ2(y)
dy

)
dx

=
(
|λϵ(θ)|+ π(βϵ(θ), θ)

) ∫ βϵ(θ)

x0

2

σ2(x)
exp

(∫ x

x0

2b(y)

σ2(y)
dy

)
dx

≤
(
|λϵ(θ)|+ π(βϵ(θ), θ)

)
mP((0, βϵ(θ))) =:M(θ),

where we have used that SP
x(x) = exp

(
−

∫ x
x0

2b(y)
σ2(y)

dy
)

and speed measure under P, mP(x, α) (cf.
(2.4)). Finally, M(θ) is finite in accordance with Assumption 2.2. □

Now we are in the position to introduce the candidate optimal potential function V ϵ as

(3.17) V ϵ(x, θ) :=

{
−
∫ βϵ(θ)
x ϕβϵ(θ)(y, θ)dy, 0 < x < βϵ(θ),

−
∫ x
βϵ(θ)

c(y)dy, x ≥ βϵ(θ),

where βϵ(θ) given by (3.13) is then such that βϵ(θ) := inf{x ∈ R+ : V ϵ
x (x, θ) = −c(x)}.

Theorem 3.1 (Existence and Uniqueness of solution to (3.5)). Let βϵ(θ) as in (3.13) and V ϵ as in
(3.17). Defining λϵ(θ) := ℓϵ(βϵ(θ), θ)), the couple (V ϵ(·, θ), λϵ(θ)), with V ϵ(·, θ) ∈ C2(R+), is the
unique solution to (3.5).

Proof. First of all, we show that V ϵ(·, θ) ∈ C2(R+). By definition of V ϵ(·, θ) (cf. (3.17)) it is suf-
ficient to show that V ϵ

xx(βϵ(θ), θ), θ) = −cx(βϵ(θ)). To that end, plugging x = βϵ(θ) in (3.10) (for
β = βϵ(θ)) we obtain

1

2
σ2(βϵ(θ))∂xϕβϵ(θ)(βϵ(θ), θ) = ℓϵ(βϵ(θ), θ)− π(βϵ(θ), θ)− b(βϵ(θ))ϕβϵ(θ)(βϵ(θ), θ)

+
ϵ

2
σ2(βϵ(θ))(ϕβϵ(θ))

2(βϵ(θ), θ)

= ℓϵ(βϵ(θ), θ)− π(βϵ(θ), θ) + b(βϵ(θ))c(βϵ(θ))

+
ϵ

2
σ2(βϵ(θ))c

2(βϵ(θ)) =
1

2
σ2(βϵ(θ))∂xc(βϵ(θ)),(3.18)

where the last equation follows from (3.6). Hence, given the strict positivity of σ we conclude the
desired equation.

We now move on by showing that (V ϵ(·, θ), λϵ(θ)) solve (3.5). For x ≥ βϵ(θ), V ϵ(·, θ) as in (3.17)
satisfies

V ϵ
x (x, θ) = −c(x)

LϵV ϵ(x, θ) + π(x, θ) = −1

2
σ2(x)cx(x)− b(x)c(x)− ϵ

2
σ2(x)c2(x) + π(x, θ)

= ℓϵ(x, θ) ≤ ℓϵ(βϵ(θ), θ)

where the last inequality comes from the Assumption 3.7 as βϵ(θ) ≥ x̂ϵ(θ) (cf. Proposition 3.2-(3)).
On the other hand, for x ∈ (0, βϵ(θ)) it is clear that, V ϵ

x (x, θ) = ϕβϵ(θ)(x, θ). Thanks to Proposition
3.13 and Lemma A.3 we have that βϵ(θ) ∈ Bϵ(θ), hence V ϵ

x (x, θ) ≥ −c(x). To conclude, the equation

LϵV ϵ(x, θ) + π(x, θ) = ℓϵ(βϵ(θ), θ) = λϵ(θ), x ∈ (0, βϵ(θ)),
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is satisfied since ϕβϵ(θ)(·, θ) solves (3.10). □

3.2. Verification Result. In order to derive the optimal control rule we introduce the following defi-
nition.

Definition 3.1 (Skorokhod Reflection Problem). Let D[0,∞) be the space of càdlàg processes on
[0,∞). Given x ∈ R+, Q ∈ Q̂(x), β ∈ R+, and ϵ > 0, the process (Xξ, ξ) ∈ D[0,∞) × Ae(x) is
said to be the solution of the Skorokhod reflection problem SP(x, β;Q, ψ) for the Q-Brownian motion
WQ if it satisfies the following properties:

(1) Xξ
t = x+

∫ t
0 (b(X

ξ
s ) + σ(Xξ

s )ψ(X
ξ
s ))ds+

∫ t
0 σ(X

ξ
s )dWQ

s − ξt, Q⊗ dt-a.s.

(2) Xξ
t ∈ (0, β], Q⊗ dt-a.s.

(3)
∫ T
0 1{Xξ

s<β}
dξs = 0, Q⊗ dt-a.s.

Proposition 3.4. For any θ ∈ R+, there exists ξ∗(θ) ∈ Ae(x) such that (Xξ∗(θ), ξ∗(θ)) is the unique
solution to SP(x, βϵ(θ);Q, ψ) with

(3.19) ξ∗t (θ) = sup
s≤t

(
I(Xξ∗

s (θ))− βϵ(θ)
)+
,

where I(X)t := x+
∫ t
0

(
b(Xs) + σ(Xs)ψ(Xs)

)
ds+

∫ t
0 σ(Xs)dW

Q
s .

Proof. Since the properties of Theorem 4.1 in [63] are satisfied (recall that ψ is bounded and locally-
Lipschitz continuous as Q ∈ Q̂(x); cf. Definition 2.2), we obtain that SP(x, β;Q, ψ) has a unique
solution (Xξ, ξ) andXξ is pathwise unique. Thanks to (3.19), it is standard to see that (Xξ∗(θ), ξ∗(θ))
satisfies the properties of SP(x, β;Q, ψ), and by uniqueness we conclude that ξ = ξ∗(θ). Furthermore,
under Assumption 2.2, the state space of the optimally controlled process Xξ∗(θ) is (0, βϵ(θ)], with
0 being not attainable and βϵ(θ) being reflecting. It this then a standard result in the theory of one-
dimensional diffusion that the process Xξ∗(θ) cannot reach 0 in finite time with positive probability.
Finally, since Xξ∗(θ)

t ∈ (0, βϵ(θ)], Q ⊗ dt-a.s., the integrability conditions in Definition 2.1 are
satisfied. Thus, ξ∗(θ) ∈ Ae(x). □

We then have the following verification theorem.

Theorem 3.2 (Verification Theorem). For every x ∈ R+, let ξ∗(θ) solve SP(x, βϵ(θ);Q∗, ψ∗), where
Q∗(θ) ∈ Q̂(x) is such that dQ∗

dP
∣∣
Ft

:= ψ∗
t , with ψ∗

t := −ϵσ(Xξ∗(θ)
t )V ϵ

x (X
ξ∗(θ)
t , θ), Q∗ ⊗ dt−a.s.

Then (ξ∗(θ),Q∗(θ)) ∈ Ae(x)× Q̂(x) realizes a saddle point in (3.1) and

λϵ(θ) = −b(βϵ(θ))c(βϵ(θ)) + π(βϵ(θ), θ)−
1

2
σ2(βϵ(θ))

(
ϵc2(βϵ(θ)) + cx(βϵ(θ))

)
.(3.20)

Proof. We split the proof into two steps.

Step 1: Let T > 0, x ∈ R+ and ϵ > 0. Recall Theorem 3.1 and introduce a sequence of
F−stopping times (τ∗n(θ))n∈N such that τ∗n(θ) := inf{t ≥ 0 : X

ξ∗(θ)
t /∈ [1/n, n]}. Then, fix-

ing Q ∈ Q̂(x) with Girsanov kernel ψ as in Definition 2.2 and applying Itô-Meyer’s formula to
(V ϵ(X

ξ∗(θ)
T∧τ∗n(θ)

, θ))T≥0, we have under Q (cf. also (2.8)) (recalling that ξ∗(θ) may cause a jump only
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at t = 0)

V ϵ(X
ξ∗(θ)
T∧τ∗n(θ)

, θ) =V ϵ(x, θ) +

∫ T∧τ∗n(θ)

0

(
1

2
σ2(Xξ∗(θ)

s )V ϵ
xx(X

ξ∗(θ)
s , θ) +

(
b(Xξ∗(θ)

s )

+ σ(Xξ∗(θ)
s )ψs

)
V ϵ
x (X

ξ∗(θ)
s , θ)

)
ds+

∫ T∧τ∗n(θ)

0
σ(Xξ∗(θ)

s )V ϵ
x (X

ξ∗(θ)
s , θ)dWQ

s

−
∫ T∧τ∗n(θ)

0
V ϵ
x (X

ξ∗(θ)
s , θ)d(ξ∗)cs(θ)−

(
V ϵ(X

ξ∗(θ)
0+ )− V ϵ(X

ξ∗(θ)
0 )

)
.(3.21)

Noting that by continuity of σ(·)V ϵ
x (·, θ) we have EQ

x

[ ∫ T∧τ∗n(θ)
0 σ(X

ξ∗(θ)
s )V ϵ

x (X
ξ∗(θ)
s , θ)dWs

]
=

0, for any T > 0, n ∈ N, by taking expectations in (3.21) with respect to Q we obtain

EQ
x

[
V ϵ(X

ξ∗(θ)
T∧τ∗n(θ)

, θ)
]
≥ V ϵ(x, θ) + EQ

x

[ ∫ T∧τ∗n(θ)

0

(
λϵ(θ)− π(Xξ∗(θ)

s , θ)− 1

2ϵ
(ψs)

2
)
ds

]
− EQ

x

[ ∫ T∧τ∗n(θ)

0
V ϵ
x (X

ξ∗(θ)
s , θ)d(ξ∗)cs(θ)

]
− 1{x>βϵ(θ)}

∫ x−βϵ(θ)

0
V ϵ
x (x− r, θ)dr,(3.22)

where we have also used the fact that, for any admissible ψ, V ϵ(·, θ) satisfies (cf. (3.5))
1

2
σ2(Xξ∗(θ)

s )V ϵ
xx(X

ξ∗(θ)
s , θ) +

(
b(Xξ∗(θ)

s ) + σ(Xξ∗(θ)
s )ψs

)
V ϵ
x (X

ξ∗(θ)
s , θ)

≥ λϵ(θ)− π(Xξ∗(θ)
s , θ)− 1

2ϵ
(ψs)

2, Q⊗ dt− a.s.,

and

(3.23)
(
V ϵ(X

ξ∗(θ)
0+ )− V ϵ(X

ξ∗(θ)
0 )

)
= 1{x>βϵ(θ)}

∫ x−βϵ(θ)

0
V ϵ
x (x− r, θ)dr.

Since,
∫∞
0 1(0,βϵ(θ))(X

ξ∗(θ)
s )d(ξ∗)s(θ) = 0, and V ϵ

x (X
ξ∗(θ)
t , θ) = −c(Xξ∗(θ)

t ) when Xξ∗(θ)
t ≥ βϵ(θ)

Q⊗ dt−a.s., from (3.22) we have

EQ
x

[
V ϵ(X

ξ∗(θ)
T∧τ∗n(θ)

, θ)
]
≥ V ϵ(x, θ) + EQ

x

[ ∫ T∧τ∗n(θ)

0

(
λϵ(θ)− π(Xξ∗(θ)

s , θ)− 1

2ϵ
(ψs)

2
)
ds

]
+ EQ

x

[ ∫ T∧τ∗n(θ)

0
c(Xξ∗(θ)

s )d(ξ∗)cs(θ)

]
+ 1{x>βϵ(θ)}

∫ x−βϵ(θ)

0
c(x− r)dr.(3.24)

Rearranging the terms and recalling (2.8) we find

EQ
x

[
V ϵ(X

ξ∗(θ)
T∧τ∗n(θ)

, θ)
]
+ EQ

x

[ ∫ T∧τ∗n(θ)

0

(
π(Xξ∗(θ)

s , θ) +
1

2ϵ
(ψs)

2
)]

≥ V ϵ(x, θ) + λϵ(θ)EQ
x

[
T ∧ τ∗n(θ)

]
+ EQ

x

[ ∫ T∧τ∗n(θ)

0
c(Xξ∗(θ)

s ) ◦ d(ξ∗)s(θ)
]
.(3.25)

Given that Xξ∗(θ)
t ∈ (0, βϵ(θ)];Q ⊗ dt−a.s., passing to the limits as n ↑ ∞ in (3.25), invoking

monotone and dominated convergence theorems, we can exchange limits with expectations and obtain

EQ
x

[
V ϵ(X

ξ∗(θ)
T , θ)

]
+ EQ

x

[ ∫ T

0

(
π(Xξ∗(θ)

s , θ) +
1

2ϵ
(ψs)

2
)]

≥ V ϵ(x, θ) + λϵ(θ)T

+ EQ
x

[ ∫ T

0
c(Xξ∗(θ)

s ) ◦ d(ξ∗)s(θ)
]
.(3.26)
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Rearranging terms, dividing by T and sending T ↑ ∞ in (3.26) we obtain that

lim inf
T↑∞

1

T
EQ
x

[ ∫ T

0

(
π(Xξ∗(θ)

s , θ) +
1

2ϵ
(ψs)

2
)
−
∫ T

0
c(Xξ∗(θ)

s ) ◦ d(ξ∗)s(θ)
]

≥ λϵ(θ)− lim sup
T↑∞

1

T
EQ
x

[
V ϵ(X

ξ∗(θ)
T , θ)

]
.(3.27)

Hence, given again that Xξ∗(θ)
t ∈ (0, βϵ(θ)], Q⊗ dt−a.s. and V ϵ(·, θ) is continuous on (0, βϵ(θ)], we

find

lim inf
T↑∞

1

T
EQ
x

[ ∫ T

0

(
π(Xξ∗(θ)

s , θ) +
1

2ϵ
(ψs)

2
)
−
∫ T

0
c(Xξ∗(θ)

s ) ◦ d(ξ∗)s(θ)
]
≥ λϵ(θ);(3.28)

that is,

(3.29) J ϵ(x; ξ∗(θ),Q, θ) ≥ λϵ(θ), for any Q ∈ Q̂(x).

Hence,

(3.30) sup
ξ∈Ae(x)

inf
Q∈Q̂(x)

J ϵ(x; ξ,Q, θ) ≥ λϵ(θ)

Step 2: Let now ξ ∈ Ae(x) and introduce the sequence of F−stopping times (τn)n∈N such that
τn := inf{t ≥ 0 : Xξ

t /∈ [1/n, n]}. Recalling the structure of the operator Lϵ in (3.4), we define a
measure Q∗(θ) ∈ Q̂(x) with Girsanov kernel ψ∗ given by

ψ∗
t : = argmin

ψ

{
1

2
σ2(Xξ

t )V
ϵ
xx(X

ξ
t , θ) +

(
b(Xξ) + σ(Xξ

t )ψt
)
V ϵ
x (X

ξ
t ) +

1

2ϵ
ψ2
t

}
= argmin

ψ

{
σ(Xξ

t )ψtV
ϵ
x (X

ξ
t , θ) +

1

2ϵ
ψ2
t

}
= −ϵσ(Xξ

t )V
ϵ
x (X

ξ
t , θ), P⊗ dt-a.s.

We claim that Q∗(θ) is admissible according to Definition 2.2. First of all, given that V ϵ
x = ϕβϵ(θ)

by (3.17), from Proposition 3.3 and Assumption 2.1 we obtain that the map x 7→ −ϵσ2(x)V ϵ
x (x, θ) is

locally-Lipschitz. Consequently, SQ∗(θ)
x as in (2.12) satisfies Assumption 2.2. Furthermore, from As-

sumption 2.1-(2) and Proposition 3.3, there exists K(βϵ(θ), θ) > 0 such that |ψ∗
t | ≤ K(βϵ(θ), θ)(1 +

|Xξ
t |2), P ⊗ dt-a.s. Hence, (2.10) holds because ξ ∈ Ae(x) and due to the sublinear growth of σ.

Finally, (2.11) is satisfied, again since ξ ∈ Ae(x). Hence, Q∗(θ) is admissible.
Using Itô-Meyer’s formula to (V ϵ(Xξ

T∧τn , θ))T≥0 and taking expectations under Q∗(θ), we obtain
(recall that, for any ξ ∈ Ae(x), it holds ξt = ξct +

∑
s≤t∆ξs, where ξc is the continuous part of ξ)

EQ∗(θ)
x

[
V ϵ(Xξ

T∧τn , θ)
]
= V ϵ(x, θ) + EQ∗(θ)

x

[ ∫ T∧τn

0

(
1

2
σ2(Xξ

s )V
ϵ
xx(X

ξ
s , θ) +

(
b(Xξ

s )

+ σ(Xξ
s )ψ

∗
s

)
V ϵ
x (X

ξ
s , θ)

)
ds

]
− EQ∗(θ)

x

[ ∫ T∧τn

0
V ϵ
x (X

ξ
s , θ)dξ

c
s

]
− EQ∗(θ)

x

[ ∑
s≤T∧τn

(
V ϵ(Xξ

s+)− V ϵ(Xξ
s )
)]
.(3.31)

Since

(3.32)
∑

s≤T∧τn

(
V ϵ(Xξ

s+)− V ϵ(Xξ
s )
)
= 1{∆ξs>0}

∫ ∆ξs

0
V ϵ
x (X

ξ
s − r, θ)dr, Q∗(θ)− a.s.,
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then, using (3.32) and the observation 1
2ϵ(ψ

∗
t )

2 = ϵ
2σ

2(Xξ
t )(V

ϵ
x )

2(Xξ
t , θ), Q∗ ⊗ dt−a.s., (3.31) gives

EQ∗(θ)
x

[
V ϵ(Xξ

T∧τn , θ)
]
= V ϵ(x, θ) + EQ∗(θ)

x

[ ∫ T∧τn

0

(
LϵV ϵ(Xξ

t , θ)−
ϵ

2
σ2(Xξ

t )(V
ϵ
x )

2(Xξ
t , θ)

)
dt

]
− EQ∗(θ)

x

[ ∫ T∧τn

0
V ϵ
x (X

ξ
s , θ) ◦ dξs

]
.(3.33)

From (3.5) we have

LϵV ϵ(Xξ
t , θ) ≤ λϵ(θ)− π(Xξ

s , θ), Q∗(θ)⊗ dt− a.s.(3.34)

Rearranging terms and using (3.34) in (3.33), one gets

EQ∗(θ)
x

[ ∫ T∧τn

0

(
π(Xξ

t , θ) +
1

2ϵ
(ψ∗

t )
2

)
dt

]
≤ V ϵ(x, θ) + EQ∗(θ)

x

[ ∫ T∧τn

0
c(Xξ

s , θ) ◦ dξs
]

+ λϵ(θ)EQ∗(θ)
x

[
T ∧ τn

]
− EQ∗(θ)

x

[
V ϵ(Xξ

T∧τn , θ)
]

− EQ∗(θ)
x

[ ∫ T∧τn

0

(
V ϵ
x (X

ξ
s , θ) + c(Xξ

t )
)
◦ dξs

]
.(3.35)

Using now that V ϵ
x (X

ξ
t , θ) ≥ −c(Xξ

t ), Q∗(θ)⊗ dt-a.s., we obtain, for some K > 0,

EQ∗(θ)
x

[ ∫ T∧τn

0

(
π(Xξ

t , θ) +
1

2ϵ
(ψ∗

t )
2

)
dt

]
≤ V ϵ(x, θ) + EQ∗(θ)

x

[ ∫ T∧τn

0
c(Xξ

s , θ) ◦ dξs
]

+ λϵ(θ)EQ∗(θ)
x

[
T ∧ τn

]
− EQ∗(θ)

x

[
V ϵ(Xξ

T∧τn , θ)
]

≤ V ϵ(x, θ) + EQ∗(θ)
x

[ ∫ T∧τn

0
c(Xξ

s , θ) ◦ dξs
]
+ λϵ(θ)EQ∗(θ)

x

[
T ∧ τn

]
≤ K

(
EQ∗(θ)
x

[
|Xξ

T∧τn |
]
+ 1

)
,(3.36)

where in the last equality we have used, thanks to (3.17), Proposition 3.3, and boundedness of c(·),
that ∣∣V ϵ(x, θ)

∣∣ ≤ K(1 + |x|),

for some K > 0, possibly depending on θ. By standard SDE estimates (due to the local Lipschitz
property of µ, σ and ψ∗) there exists M > 0 such that

(3.37) EQ∗(θ)
x

[
sup
t≤T

∣∣Xξ
t

∣∣] ≤M
(
1 + |x|+ EQ∗(θ)

x

[
ξT ]

)
<∞,

since ξ ∈ Ae(x). Then, letting n ↑ ∞ and invoking monotone convergence theorem yields

EQ∗(θ)
x

[ ∫ T

0

(
π(Xξ

t , θ) +
1

2ϵ
(ψ∗

t )
2

)
dt

]
≤ V ϵ(x, θ) + EQ∗(θ)

x

[ ∫ T

0
c(Xξ

s , θ) ◦ dξs
]

+ λϵ(θ)T +K
(
EQ∗(θ)
x

[∣∣Xξ
T

∣∣]+ 1
)

(3.38)

Hence, rearranging terms in (3.38), dividing by T and passing T ↑ ∞ we have

lim inf
T↑∞

1

T
EQ∗(θ)
x

[ ∫ T

0

(
π(Xξ

t , θ) +
1

2ϵ
(ψ∗

t )
2

)
dt−

∫ T

0
c(Xξ

s , θ) ◦ dξs
]
≤ λϵ(θ),(3.39)

where in (3.39) we have used the property lim infn(vn + rn) ≤ lim infn vn + lim sup rn and the fact
that

(3.40) lim sup
T↑∞

1

T
EQ∗(θ)
x

[
|Xξ

T |
]
= lim sup

T↑∞

1

T
EP
x

[
|Xξ

T |ψ
∗
T

]
= 0,
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given that |ψ∗
T | ≤ K(βϵ(θ), θ)(1 + |Xξ

t |2), P⊗ dt-a.s. and ξ ∈ Ae(x). Because (3.39) holds for any
ξ ∈ Ae(x), we find

(3.41) inf
Q∈Q̂(x)

sup
ξ∈Ae(x)

J ϵ(x, ξ,Q; θ) ≤ λϵ(θ),

and, due to Step 1 we conclude that

(3.42) λϵ(θ) = inf
Q∈Q̂(x)

sup
ξ∈Ae(x)

J ϵ(x, ξ,Q; θ) = sup
ξ∈Ae(x)

inf
Q∈Q̂(x)

J ϵ(x, ξ,Q; θ).

□

Remark 3.3. As a byproduct of the verification theorem, we have obtained in (3.42) that the zero-sum
game between the decision maker choosing ξ and Nature choosing Q has a value.

4. MEAN-FIELD EQUILIBRIUM

In the following, we prove existence and uniqueness of the mean-field equilibrium (cf. Definition
2.3) by an application of Schauder-Tychonof fixed-point theorem. Let P(R+,B(R+)) be the space of
probability measures on R+ with the Borel σ-field, endowed with the weak topology.

4.1. Continuity and boundedness of the free-boundary with respect to θ. In this subsection, we
establish continuity and bounds of the map θ 7→ βϵ(θ), θ ∈ R+. For our subsequent analysis, we
introduce the following assumptions.

Assumptions 4.1. (1) There exists κ : R+ → R+ continuously differentiable such that

(4.1) lim
θ↓0

π(x, θ) = ∞ and lim
θ↑∞

π(x, θ) = κ(x).

and πx(x, θ) ≥ κx(x) for any (x, θ) ∈ R2
+.

(2) There exist δ ∈ (0, 1) and C > 0 such that,

(4.2)
∣∣π(x, θ2)− π(x, θ1)

∣∣ ≤ C(1 + |x|δ)|θ2 − θ1|,
for any θ1, θ2 ∈ R+ and x ∈ R+.

(3) The function ℓϵ : R+ → R, with ℓϵ(x) := −b(x)c(x) + κ(x) − 1
2σ

2(x)(ϵc2(x) + cx(x)),
satisfies the following:
(a) For any ϵ > 0, there exist ŷϵ ∈ R+ such that,

(4.3) (ℓϵ)x(x)


> 0, x < ŷϵ

= 0, x = ŷϵ

< 0, x > ŷϵ.

(b) One has that

(4.4) lim
x↑∞

ℓϵ(x) = −∞ and ℓϵ(0) := lim
x↓0

ℓϵ(x) is finite.

(c) One has that ŷ
ϵ
:= inf{x ≥ ŷϵ(θ) : ℓ

ϵ(x) = ℓϵ(0)} is finite.

Remark 4.1. An example of π and κ for which both Assumptions 2.3 and 4.1 are satisfied is π(x, θ) =
xδ(θ−(1+δ) + η) and κ(x) = ηxδ, where δ ∈ (0, 1) and η > 0.

Our first result is related to the monotonicity of the map θ 7→ βϵ(θ), θ ∈ R+.

Lemma 4.1. The map θ 7→ βϵ(θ), θ ∈ R+, is nonincreasing.

Proof. Let θ1, θ2 ∈ R+ with θ1 < θ2. From Proposition 3.13 we know that βϵ(θ1) is well-defined
and we introduce ϕβϵ(θ1)(·, θ1) and ϕβϵ(θ1)(·, θ2), which are the unique classical solutions to (3.10)
for γ = 0, β = βϵ(θ1) and θ = θ1 and θ = θ2, respectively. Hence, from Proposition A.1-(1)
we obtain that ϕβϵ(θ1)(x, θ2) ≥ ϕβϵ(θ1)(x, θ1) ≥ −c(x) for any x ∈ (0, βϵ(θ1)], which implies that
βϵ(θ1) ∈ Bϵ(θ2) (cf. (3.13)) and βϵ(θ2) = inf Bϵ(θ2) ≤ βϵ(θ1). □
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Lemma 4.2. There exists β
ϵ
∈ R+, such that βϵ(θ) ≥ β

ϵ
for any θ ∈ R+.

Proof. Let γ > 0, θ ∈ R+, and define the functionψγ(x, θ) := ϕβϵ(θ)(x, θ)−ϕ
γ(x), where ϕβϵ(θ)(·, θ)

satisfies (3.10) for β = βϵ(θ) and γ = 0, and ϕγ satisfies
(4.5){

1
2σ

2(x)ϕγ
x
(x) + b(x)ϕγ(x)− ϵ

2σ
2(x)(ϕγ)2(x) = ℓϵ(βϵ(θ))− κ(x)− γ, x ∈ (0, βϵ(θ))

ϕγ(x) = −c(x), x ∈ [βϵ(θ),∞).

Based on the proof of Proposition 3.1, we can show that the function ϕγ uniquely solves (4.5) and it
is such that ϕγ ∈ C1(R+). Hence, it follows that ψγ(·, θ) is the unique continuously differentiable
solution to

(4.6)


1
2σ

2(x)(ψγ)x(x, θ) + b(x)ψγ(x, θ)− ϵ
2σ

2(x)(ψγ)2(x, θ)− ϵσ2ϕ(x)ψγ(x, θ)

=
((
π(βϵ(θ), θ)− κ(βϵ(θ))

)
−
(
π(x, θ)− κ(x)

))
+ γ, x ∈ (0, βϵ(θ))

ψγ(x, θ) = 0, x ∈ [βϵ(θ),∞).

Notice that κx(x) ≤ πx(x, θ) for any θ ∈ R+ (cf. Assumptions 2.3-(3) and Assumption 4.1-(1)), and
that, thanks to Assumption 4.1-(1),(

π(βϵ(θ), θ)− κ(βϵ(θ))
)
−
(
π(x, θ)− κ(x)

)
=

∫ βϵ(θ)

x

(
π(y, θ)− κ(y)

)
x
dy ≥ 0, x ≤ βϵ(θ).

Then, plugging x = βϵ(θ) in (4.6), we obtain ψγx(βϵ(θ), θ) > 0. We want to show that ψγ(x, θ) ≤ 0
for any x ∈ (0, βϵ(θ)]. Arguing by contradiction, we assume that there exists z0(θ) := sup{x ∈
(0, βϵ(θ)) : ψγ(x, θ) = 0} (which is well-defined due to the continuity of ψγ(·, θ); cf. Proposition
3.1, we plug x = z0(θ) in (4.6)), and we obtain

(4.7)
1

2
σ2(z0(θ))(ψ

γ)x(z0(θ), θ) =

∫ βϵ(θ)

z0(θ)

(
π(y, θ)− κ(y)

)
x
dy + γ > 0,

where the last inequality follows from Assumptions 2.3-(2). Hence, we reach to a contradiction with
Lemma A.1. Consequently, we have that −c(x) ≤ ϕβϵ(θ)(x, θ) ≤ ϕγ(x) for any x ∈ (0, βϵ(θ)].
Finally, thanks to (4.1), (4.3), and (4.4), we can mimic the steps of the proof of Proposition 3.2 to
show the existence of β

ϵ
:= sup{x ∈ (0, βϵ(θ)] : ϕ

γ(x) ≥ −c(x)} > 0, with β
ϵ
≤ βϵ(θ). Then we

conclude as in Lemma 4.1. □

Lemma 4.3. For any θ1, θ2 ∈ R+, there exists C0 := C0(θ1, θ2) > 0 such that

(4.8)
∣∣λϵ(θ2)− λϵ(θ1)

∣∣ ≤ C0|θ2 − θ1|.

Proof. For arbitrary θ1, θ2 ∈ R+, we recall (2.13) and for convenience we denote Q∗
i := Q∗(θi), i =

1, 2. Then

λϵ(θ2)− λϵ(θ1) = sup
ξ∈Ae(x)

inf
Q∈Q̂(x)

J ϵ(x; ξ,Q, θ2)− sup
ξ∈Ae(x)

inf
Q∈Q̂(x)

J ϵ(x; ξ,Q, θ1)

≤ J ϵ(x; ξ∗(θ2),Q∗
1, θ2)− J ϵ(x; ξ∗(θ2),Q∗

1, θ1)

≤ lim sup
T↑∞

1

T
EQ∗

1
x

[ ∫ T

0

∣∣π(Xξ∗(θ2)
t , θ2)− π(X

ξ∗(θ2)
t , θ1)

∣∣dt]
≤ C lim sup

T↑∞

1

T
EQ∗

1
x

[ ∫ T

0
(1 + |Xξ∗(θ2)

t |δ)dt
]∣∣θ2 − θ1

∣∣,
where in the second inequality we have used the property lim infn αn− lim infn βn ≤ lim supn(αn−
βn), and in the third inequality Assumption 4.1-(2). Since, Xξ∗(θ2)

t ∈ (0, βϵ(θ2)], Q∗
1−a.s., we obtain

that

(4.9) EQ∗
1

x

[∣∣Xξ∗(θ2)
t

∣∣δ] ≤ βδϵ (θ2) <∞.
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Hence,

(4.10) lim sup
T↑∞

1

T
EQ∗

1

[ ∫ T

0
(1+ |Xξ∗(θ2)

t |δ)dt
]
≤ lim sup

T↑∞

1

T

∫ T

0
(1+βδϵ (θ2))dt = 1+βδϵ (θ2) <∞.

and we conclude. □

Our next result is about the continuity of the map θ 7→ V ϵ
x (x, θ), x ∈ R+.

Proposition 4.1. The map θ 7→ V ϵ
x (x, θ), x ∈ R+, is locally Lipschitz continuous.

Proof. Let θ1, θ2 ∈ R+. We focus on the case of θ1 ≤ θ2, since the proof is analogous in the other
case. By Lemma 4.1, we have that βϵ(θ2) ≤ βϵ(θ1). For x ∈ R+, we know that V ϵ

x (·, θi) satisfies
(3.10), for β = βϵ(θi), i = 1, 2 and γ = 0. Hence,

V ϵ
x (x, θ1)− V ϵ

x (x, θ2) =
(
V ϵ
x (x, θ1)− V ϵ

x (x, θ2)
)
1{x∈(0,βϵ(θ2))}

+
(
V ϵ
x (x, θ1)− V ϵ

x (x, θ2)
)
1{x∈[βϵ(θ2),βϵ(θ1)]} +

(
V ϵ
x (x, θ1)− V ϵ

x (x, θ2)
)
1{x∈[βϵ(θ1),∞)}

=
(
V ϵ
x (x, θ1)− V ϵ

x (x, θ2)
)
1{x∈(0,βϵ(θ2))} +

(
V ϵ
x (x, θ1) + c(x)

)
1{x∈[βϵ(θ2),βϵ(θ1))},(4.11)

where we have used the fact that V ϵ
x (x, θi) = −c(x), x ∈ [βϵ(θ1),∞) for i = 1, 2.

Take now x ∈ [βϵ(θ2), βϵ(θ1)) and define F (θ1,θ2)
2 (x) := V ϵ

x (x, θ1)+c(x). Notice that, actually, by
Proposition 3.3, there existsM(θ1) > 0 such that supx≥0

∣∣F (θ1,θ2)
2 (x)

∣∣ ≤M(θ1). We start by showing

that there exists C2(θ1, θ2) > 0 such that
∣∣F (θ1,θ2)

2 (x)
∣∣ ≤ C2(θ1, θ2)|θ1 − θ2|, x ∈ [βϵ(θ2), βϵ(θ1)).

To that end, notice that by (3.10) (for β = βϵ(θ1)) F
(θ1,θ2)
2 satisfies

1

2
σ2(x)∂xF

(θ1,θ2)
2 + b(x)F

(θ1,θ2)
2 − ϵ

2
σ2(x)(F

(θ1,θ2)
2 )2(x) + ϵσ2(x)c(x)F

(θ1,θ2)
2 (x)(4.12)

=
(
λϵ(θ1)− ℓϵ(x, θ2)

)
−
(
π(x, θ1)− π(x, θ2)

)
, x ∈ [βϵ(θ2), βϵ(θ1)),

with F (θ1,θ2)
2 (βϵ(θ1)) = 0. For x ∈ [βϵ(θ2), βϵ(θ1)), by Assumption 3.1-(3.7) we have that

(4.13) ℓϵ(x, θ2)− λϵ(θ1) ≤ ℓϵ(βϵ(θ2), θ2)− λϵ(θ1) = λϵ(θ2)− λϵ(θ1),

and, by the fundamental theorem of calculus (for x ∈ [βϵ(θ2), βϵ(θ1)), using (4.12) and (4.13) we
have

0 ≤ F
(θ1,θ2)
2 (x) = F

(θ1,θ2)
2 (βϵ(θ1)))−

∫ βϵ(θ1)

x
∂xF

(θ1,θ2)
2 (y)dy

= −
∫ βϵ(θ1)

x

2

σ2(y)

(
− b(x) +

ϵ

2
σ2(y)F

(θ1,θ2)
2 (y)− ϵσ2(y)c(y)

)
F

(θ1,θ2)
2 (y)dy

−
∫ βϵ(θ1)

x

2

σ2(y)

((
λϵ(θ1)− ℓϵ(x, θ2)

)
−
(
π(y, θ1)− π(y, θ2)

))
dy

≤
∫ βϵ(θ1)

x

2

σ2(y)

(
+ b(x) + ϵσ2(y)c(y)

)
F

(θ1,θ2)
2 (y)dy

+

∫ βϵ(θ1)

x

2

σ2(y)

((
λϵ(θ2)− λϵ(θ1)

)
−
(
π(y, θ2)− π(y, θ1)

))
dy.(4.14)

Hence,

0 ≤ F
(θ1,θ2)
2 (x) ≤

(∫ βϵ(θ1)

x

2

σ2(y)
dy

)∣∣λϵ(θ2)− λϵ(θ1)
∣∣+ ∫ βϵ(θ1)

x

2

σ2(y)

∣∣π(y, θ2)− π(y, θ1)
∣∣dy

+

∫ βϵ(θ1)

x

(
2|b(x)|
σ2(y)

+ 2ϵc

)
F

(θ1,θ2)
2 (y)dy.(4.15)
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Then, by Grönwall inequality,

0 ≤ F
(θ1,θ2)
2 (x) ≤

[(∫ βϵ(θ1)

x

2

σ2(y)
dy

)∣∣λϵ(θ2)− λϵ(θ1)
∣∣+ ∫ βϵ(θ1)

x

2

σ2(y)

∣∣π(x, θ1)− π(x, θ2)
∣∣dy]

· exp
(∫ βϵ(θ1)

x

(
2|b(x)|
σ2(y)

+ 2ϵc

)
dy

)
,

which, using Assumption 2.3 and Lemma 4.3, yields

0 ≤ F
(θ1,θ2)
2 (x)

≤
(
C0

(∫ βϵ(θ1)

x

2

σ2(y)
dy

)
+

∫ βϵ(θ1)

x

2C(1 + |y|δ)
σ2(y)

dy

)
· exp

(∫ βϵ(θ1)

x

(
2|b(x)|
σ2(y)

+ 2ϵc

)
dy

)
|θ2 − θ1|

≤
(
C0

(∫ βϵ(θ1)

βϵ(θ2)

2

σ2(y)
dy

)
+

∫ βϵ(θ1)

βϵ(θ2)

2C(1 + |y|δ)
σ2(y)

dy

)
· exp

(∫ βϵ(θ1)

βϵ(θ2)

(
2|b(x)|
σ2(y)

+ 2ϵc

)
dy

)
|θ2 − θ1| =: C2(θ1, θ2)|θ2 − θ1|.(4.16)

This gives the desired result.
Take now x ∈ (0, βϵ(θ2)]. We want to show that there exists C1(x, θ1, θ2) > 0 such that,

F
(θ1,θ2)
1 (x) := V ϵ

x (x, θ1)−V ϵ
x (x, θ2), satisfies

∣∣F (θ1,θ2)
1 (x)

∣∣ ≤ C1(x, θ1, θ2)|θ2−θ1|, x ∈ (0, βϵ(θ2)].

Notice that F (θ1,θ2)
1 is the unique classical solution to

1

2
σ2(x)∂xF

(θ1,θ2)
1 (x) + b(x)F

(θ1,θ2)
1 (x)− ϵ

2
σ2(x)(F

(θ1,θ2)
1 )2(x)− ϵσ2(x)V ϵ

x (x, θ1)F
(θ1,θ2)
1 (x)

(4.17)

=
(
λϵ(θ1)− λϵ(θ2)

)
−
(
π(x, θ1)− π(x, θ2)

)
, x ∈ (0, βϵ(θ2)),

with F (θ1,θ2)
1 (βϵ(θ2)) = F

(θ1,θ2)
2 (βϵ(θ2)). Following the same steps as in the case of F2, we have that

∣∣F (θ1,θ2)
1 (x)

∣∣ = ∣∣F (θ1,θ2)
1 (βϵ(θ2))−

∫ βϵ(θ2)

x
∂xF

(θ1,θ2)
1 (y)dy

∣∣
≤

∣∣F (θ1,θ2)
1 (βϵ(θ2))

∣∣+ ∫ βϵ(θ2)

x

2

σ2(y)

∣∣− b(x) +
ϵ

2
σ2(y)F

(θ1,θ2)
1 (y) + ϵσ2(y)V ϵ

x (y, θ1)
∣∣ · ∣∣F (θ1,θ2)

1 (y)
∣∣dy

+

∫ βϵ(θ2)

x

2

σ2(y)

(∣∣λϵ(θ2)− λϵ(θ1)
∣∣+ ∣∣π(y, θ2)− π(y, θ1)

∣∣)dy
≤

∣∣F (θ1,θ2)
1 (βϵ(θ2))

∣∣+ ∫ βϵ(θ2)

x

(
2|b(x)|
σ2(y)

+ ϵ
∣∣F (θ1,θ2)

1 (y)
∣∣+ 2ϵ

∣∣V ϵ
x (y, θ1)

∣∣)∣∣F (θ1,θ2)
1 (y)

∣∣dy
+

(∫ βϵ(θ2)

x

2

σ2(y)
dy

)∣∣λϵ(θ2)− λϵ(θ1)
∣∣+ ∫ βϵ(θ2)

x

2

σ2(y)

∣∣π(y, θ2)− π(y, θ1)
∣∣dy.

(4.18)

From (4.16), we know that
∣∣F (θ1,θ2)

2 (x)
∣∣ ≤ C2(θ1, θ2)|θ2 − θ1| on [βϵ(θ2), βϵ(θ1)). Moreover, by

Proposition 3.3, there exist M̂(θ1, θ2) > 0 and M(θ1) > 0 such that
∣∣F (θ1,θ2)

1 (x)
∣∣ ≤ M̂(θ1, θ2)

and
∣∣V ϵ
x (x, θ1)

∣∣ ≤ M(θ1), for any x ∈ [0,∞). These facts, combined with Assumption 4.1-(2) and
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Lemma 4.3, gives∣∣F (θ1,θ2)
1 (x)

∣∣ ≤ (
C2(θ1, θ2) + C0

∫ βϵ(θ2)

x

2

σ2(y)
dy + C

∫ βϵ(θ2)

x

2(1 + |y|δ)
σ2(y)

dy

)∣∣θ2 − θ1
∣∣

+

∫ βϵ(θ2)

x

(
2|b(x)|
σ2(y)

+ ϵM̂(θ1, θ2) + 2ϵM(θ1)
))∣∣F (θ1,θ2)

1 (y)
∣∣dy(4.19)

Then, by Grönwall inequality, for suitable K(θ1, θ2) > 0,∣∣F (θ1,θ2)
1 (x)

∣∣ ≤ [
C1(θ1, θ) + C0

∫ βϵ(θ2)

x

2

σ2(y)
dy + C

∫ βϵ(θ2)

x

2(1 + |y|δ)
σ2(y)

dy

]
· exp

(∫ βϵ(θ2)

x

(
2|b(x)|
σ2(y)

+ ϵK(θ1, θ2)dy

)∣∣θ2 − θ1
∣∣ =: C2(x, θ1, θ2)

∣∣θ2 − θ1
∣∣.(4.20)

□

Corollary 4.1. The map (x, θ) 7→ V ϵ
x (x, θ) is continuous on R2

+.

Introduce the inaction region C and the action region S as it follows:

C := {(x, θ) ∈ R2
+ : V ϵ

x (x, θ) > −c(x)}(4.21)

S := {(x, θ) ∈ R2
+ : V ϵ

x (x, θ) = −c(x)},(4.22)

and remember that

(4.23) βϵ(θ) = inf{x ∈ R+ : V ϵ
x (x, θ) = −c(x)}.

We then have the following continuity result.

Theorem 4.1. The map θ 7→ βϵ(θ) is continuous.

Proof. We split the proof into two steps.

Step 1: In this step we show that the map θ 7→ βϵ(θ) is right-continuous. Fix θ ∈ R+, and a
sequence {θn}n∈N such that θn ↘ θ as n ↑ ∞. Since the map θ 7→ βϵ(θ) is nonincreasing (cf. Lemma
4.1) we obtain that βϵ(θn) ≤ βϵ(θ), for any n ∈ N, which implies βϵ(θ+) := limn↑∞ βϵ(θ

n) ≤ βϵ(θ).
It remains to show that βϵ(θ) ≤ βϵ(θ

+). To that end, we observe that (θn, βϵ(θn)) ∈ S, for any n ∈ N,
and (θn, βϵ(θ

n)) → (θ, βϵ(θ
+)) as n ↑ ∞. Thanks to continuity of (x, θ) 7→ V ϵ

x (x, θ) (cf. Corollary
4.1) we know that S is closed, hence (θ, βϵ(θ

+)) ∈ S. Now, (4.23) gives βϵ(θ) ≤ βϵ(θ
+).

Step 2: Now we prove that map θ 7→ βϵ(θ) is left-continuous. In order to do this, we borrow ideas
from [29] (see also [36]). Arguing by contradiction, we assume that there exists θ0 ∈ Θ such that
βϵ(θ0) < βϵ(θ

−
0 ), where βϵ(θ−0 ) := limδ↓0 βϵ(θ0 − δ). The limit exists due to the monotonicity of

θ 7→ βϵ(θ) (cf. Lemma 4.1). Then, we can choose x1, x2 ∈ R+ such that βϵ(θ0) < x1 < x2 < βϵ(θ
−
0 )

and θ1 < θ0. We define a rectangular domain denoted by R with vertices (x1, θ1), (x1, θ0), (x2, θ1)
and (x2, θ0). Notice that R ⊂ C and [x1, x2]× {θ0} ⊂ S . From (3.5) we know that V ϵ satisfies

(4.24)

{
LϵV ϵ(x, θ) + π(x, θ) = λϵ(θ), (x, θ) ∈ [x1, x2]× [θ1, θ0),

V ϵ
x (x, θ0) = −c(x), x ∈ [x1, x2].

Denote by C∞
c ((x1, x2)) the set of functions with infinitely many continuous derivatives and compact

support in (x1, x2). Pick arbitrary ψ ∈ C∞
c ((x1, x2)) such that ψ ≥ 0 and

∫ x2
x1
ψ(x)dx > 0, and,

for θ ∈ [θ1, θ0), multiply the first equation in (4.24) by ψ and integrate both sides over (x1, x2). This
gives

(4.25)
∫ x2

x1

(
LϵV ϵ(x, θ) + π(x, θ))ψ(x)dx =

∫ x2

x1

λϵ(θ)ψ(x)dx.
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Rearranging terms and using integration by parts on the left-hand side we obtain

−
∫ x2

x1

(
1

2
σ2(x)ψ(x)

)
x

V ϵ
x (x, θ)dx =

∫ x2

x1

(
λϵ(θ)− b(x)V ϵ

x (x, θ)

−π(x, θ) + ϵ

2
σ2(x)(V ϵ

x )
2(x, θ)

)
ψ(x)dx.(4.26)

From Proposition 4.1 we know that the map θ 7→ V ϵ
x (x, θ), x ∈ R+, is continuous. Hence, taking

limits as θ ↑ θ0, by invoking the dominated convergence theorem, we obtain

−
∫ x2

x1

(
1

2
σ2(x)ψ(x)

)
x

V ϵ
x (x, θ0)dx =

∫ x2

x1

(
λϵ(θ0)− b(x)V ϵ

x (x, θ0)

−π(x, θ0) +
ϵ

2
σ2(x)(V ϵ

x )
2(x, θ0)

)
ψ(x)dx.(4.27)

Since now V ϵ
x (x, θ0) = −c(x), x ∈ [x1, x2], recalling (3.6) and that λϵ(θ) = ℓϵ(βϵ(θ), θ), applying

again integration by parts on the left-hand side and rearranging the terms, we obtain

(4.28)
∫ x2

x1

(
ℓϵ(βϵ(θ0), θ0)− ℓϵ(x, θ0)

)
ψ(x)dx = 0.

However, the left-hand side of (4.28) is strictly negative by Assumption 3.1-(3.7). Hence, we have a
contradiction. □

4.2. Existence and Uniqueness of the Ergodic MFG Equilibrium.

Proposition 4.2. For ϵ > 0, the following hold:

(1) For any θ ∈ R+, there exists a stationary distribution of (Xξ∗(θ)
t )t≥0 under Q∗(θ), denoted

by νθ,ϵ ∈ P(R+,B(R+)), and its density, denoted by mθ,ϵ, is such that
(4.29)

mθ,ϵ(x) =
2

νθ,ϵ((0, βϵ(θ)])σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(x)

σ2(y)
dy + 2ϵ

∫ βϵ(θ)

x
V ϵ
x (y, θ)dy

)
1(0,βϵ(θ)](x),

where

νθ,ϵ((0, βϵ(θ)]) :=

∫ βϵ(θ)

0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(x)

σ2(y)
dy + 2ϵ

∫ βϵ(θ)

x
V ϵ
x (y, θ)dy

)
dx

(2) The map θ 7→ νθ,ϵ is continuous.

Proof. Let x ∈ R+ and θ ∈ R+. From Proposition 3.4, we know that under Q∗(θ) ∈ Q̂(x), with
dQ∗(θ)
dP

∣∣
Ft

= −ϵσ(Xξ∗(θ)
t )V ϵ

x (X
ξ∗(θ)
t , θ) P-a.s. (cf. Theorem 3.2), the process (Xξ∗(θ)

t )t≥0 evolves as

(4.30) dX
ξ∗(θ)
t =

(
b(X

ξ∗(θ)
t )− ϵσ2(X

ξ∗(θ)
t )V ϵ

x (X
ξ∗(θ)
t , θ)

)
dt+ σ(X

ξ∗(θ)
t )dW

Q∗(θ)
t − dξ∗t (θ),

withXξ∗(θ)
0 = x, and (Xξ∗(θ), ξ∗(θ)) solving SP(x, βϵ(θ);Q∗(θ),−ϵσ(·)V ϵ

x (·, θ)) (cf. Definition 3.1).
From Proposition 3.3, there exists M := M(θ) > 0 such that |V ϵ

x (x, θ)| ≤ M(θ) for any x ∈ [0,∞)
(see (3.17)), so that

νθ,ϵ((0, βϵ(θ)]) =

∫ βϵ(θ)

0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(x)

σ2(y)
dy + 2ϵ

∫ βϵ(θ)

x
V ϵ
x (y, θ)dy

)
dx

≤
∫ βϵ(θ)

0

2

σ2(x)
exp

(
−
∫ βϵ(θ)

x

2b(x)

σ2(y)
dy + 2ϵMβϵ(θ)

)
dx

=: exp(2ϵMβϵ(θ))m
P((0, βϵ(θ)]) <∞,(4.31)

by Assumption 2.2.
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Then, from Section 36 of Chapter II in [10] the process (X
ξ∗(θ)
t )t≥0 is ergodic and has invariant

measure νθ,ϵ ∈ P(R+,B(R+)) with

(4.32) νθ,ϵ((0, x)) =

∫ x

0
mθ,ϵ(y)dy, x ∈ (0, βϵ(θ)].

Claim 2 follows from Proposition 4.1 and Theorem 4.1. □

We are now in the position to prove the main result of this section. To this end, recall Assumption
2.4 we introduce the operator T : R+ → R+, as

(4.33) T θ := F

(∫
R+

f(x)νθ,ϵ(dx)

)
= F (⟨f, νθ,ϵ⟩),

where ⟨f, νθ,ϵ⟩ :=
∫
R+
f(x)νθ,ϵ(dx). Thanks to the previous results, we can now prove the existence

and uniqueness of a stationary mean-field equilibrium as in Definition 2.3.

Theorem 4.2. For any ϵ > 0, there exists a unique θϵ ∈ R+ such that θϵ = T θϵ.
Proof. Let ϵ > 0. We divide the proof into three steps.

Step 1: Set of relevant θ. Let x ∈ R+ and θ ∈ R+. We start by obtaining a lower bound for T θ,
which is uniform with respect to θ. For β

ϵ
∈ R+ as in Lemma 4.2, and arguing as in Proposition 3.1,

we can find V ϵ ∈ C2(R+) to be the unique classical solution to the problem

(4.34)

{
1
2σ

2(x)V ϵ
xx(x) + b(x)V ϵ

x(x)− ϵ
2σ

2(x)
(
V ϵ
x

)2
(x) = λϵ − κ(x), x < β

ϵ
,

V ϵ
x(x) = −c(x), x ≥ β

ϵ
.

Recall Q∗(θ) (cf. Theorem 3.2). Then, Proposition 3.4 allows to construct an F-adapted pair (Y ζ , ζ) ∈
D[0,∞)×A such that

(4.35) dY ζ
t = (b(Y ζ

t )− ϵσ2(Y ζ
t )V

ϵ
x(Y

ζ
t ))dt+ σ(Y ζ

t )dW
Q∗(θ)
t − dζt, Y ζ

0 = x,

and (Y ζ , ζ) solves SP(x, β
ϵ
;Q∗(θ),−ϵσV ϵ

x). Notice that, while Y ζ is independent of θ, its expecta-
tion under Q∗(θ) is not. However, this is easily fixed. We define a new complete probability space
(Ω̂, F̂ , Q̂) supporting a Brownian motion (Ŵt)t≥0, let (F̂o

t )t≥0 be the filtration generated by Brownian
motion Ŵ , and denote by F̂ := (F̂t)t≥0 its augmentation with the Q̂-null sets. Hence, we introduce

(4.36) Â := {(ξ̂t)t≥0, F̂-adapted, nondecreasing, left-continuous and such that ξ̂0 = 0, Q̂-a.s.}.

Thanks to Lemma 5.5 in [30], since ζ ∈ A we can find ζ̂ ∈ Â that is (F̂o
t )t≥0-predictable and such

that LawQ∗(θ)(W
Q∗(θ), ζ) = LawQ̂(Ŵ , ζ̂). Therefore, from Lemma 5.6 in [30] we have that

(4.37) LawQ∗(θ)(W
Q∗(θ), Y ζ , ζ) = LawQ̂(Ŵ , Ŷ ζ̂ , ζ̂),

where (Ŷ ζ̂) is the unique strong solution on (Ω̂, F̂ , Q̂, F̂) to

(4.38) dŶ ζ̂
t =

(
b(Ŷ ζ̂

t )− ϵσ2(Ŷ ζ̂
t )V

ϵ
x(Ŷ

ζ̂
t )

)
dt+ σ(Ŷ ζ̂

t )dŴt − dζ̂t, Ŷ ζ̂
0 = x,

subject to (Ŷ ζ̂ , ζ̂) uniquely solving SP(x, β
ϵ
; Q̂,−ϵσV ϵ

x). Hence, we have that

(4.39) EQ̂
x

[
f(Ŷ ζ̂

t )
]
= EQ∗(θ)

x

[
f(Y ζ

t )
]
, for any t ≥ 0.

Furthermore, arguing as in Proposition 4.2, we can show that (Ŷ ζ̂
t )t≥0 admits a unique stationary

distribution denoted by νϵ ∈ P(R+,B(R+)). Thus, by ergodicity of Ŷ ζ̂ (see Section 36 of Chapter II
in [10]), we obtain that

(4.40) ⟨f, νϵ⟩ = lim
T↑∞

1

T

∫ T

0
EQ̂
x

[
f(Ŷ ζ̂

t )
]
dt,
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and we define

(4.41) θϵ1 := F
(
⟨f, νϵ⟩

)
and θ

ϵ
1 := F

(
f(βϵ(θ

ϵ
1))

)
.

It is then clear that

(4.42) θϵ1 := F
(
⟨f, νϵ⟩

)
≤ F

(
f(β

ϵ
)
)
≤ F

(
f(βϵ(θ

ϵ
1)
)
= θ

ϵ
1,

where the first inequality follows from Assumption 2.4-(1) and the second inequality is due to Lemma
4.2.

For θ ∈ [θϵ1, θ
ϵ
1], we know that βϵ(θ

ϵ
1) ≤ βϵ(θ) ≤ βϵ(θ

ϵ
1) (cf. Lemma 4.1). Furthermore, it holds

(4.43) V ϵ
x (x, θ) = ϕβϵ(θ)(x, θ) ≤ ϕβϵ(θϵ1)(x, θ) ≤ ϕβϵ(θϵ1)(x, θ

ϵ
1) =: V̂ ϵ

x (x), x ∈ (0, βϵ(θ)],

where the first inequality follows from Proposition A.2 and the second follows from Proposition A.1.
Additionally, V̂ ϵ

x is the unique solution to (3.10) for β = βϵ(θ
ϵ
1), θ = θ

ϵ
1 and γ = 0. We introduce the

F-adapted process (Zt)t≥0 with dynamics

(4.44) dZt = (b(Zt)− ϵσ2(Zt)V̂
ϵ
x (Zt))dt+ σ(Zt)dW

Q∗(θ)
t , Z0 = x.

Thanks to the regularity of V̂ ϵ (cf. Proposition 3.1), equation (4.44) admits a unique strong solution.
Arguing as in Proposition 3.4, we can find a pair (Zξ(θ

ϵ
1), ξ(θϵ1)) ∈ D[0,∞)×A that uniquely solves

SP(x, βϵ(θ
ϵ
1);Q∗(θ),−ϵσV̂ ϵ

x ). Consequently, given that f is increasing, Proposition A.2 gives us

(4.45) EQ∗(θ)
x

[
f(Zξ(θ

ϵ
1))

]
≤ EQ∗(θ)

x

[
f(X

ξ∗(θ)
t )

]
,

where (X
ξ∗(θ)
t )t≥0 is the strong solution to

(4.46) dX
ξ∗(θ)
t = (b(X

ξ∗(θ)
t )− ϵσ2(X

ξ∗(θ)
t )V ϵ

x (X
ξ∗(θ)
t , θ))dt+ σ(X

ξ∗(θ)
t )dW

Q∗(θ)
t − dξ∗t (θ),

with ξ∗(θ) as in (3.19) (cf. Proposition 3.4). Furthermore, using again Lemma 5.5 and Lemma 5.6
from [30] we can find (Ẑ ξ̂(θ

ϵ
1), ξ̂(θϵ1)) ∈ D[0,∞)×Â such that (Ẑ ξ̂(θ

ϵ
1), ξ̂(θϵ1)) solves SP(x, βϵ(θ

ϵ
1); Q̂,−ϵσV̂ ϵ

x ),
where Ẑ ξ̂(θ

ϵ
1) is the unique strong solution to

(4.47) dẐ
ξ̂(θϵ1)
t = (b(Ẑ

ξ̂(θϵ1)
t )− ϵσ2(Ẑ

ξ̂(θϵ1)
t )V̂ ϵ

x (Ẑ
ξ̂(θϵ1)
t ))dt+ σ(Ẑ

ξ̂(θϵ1)
t )dW Q̂

t − dξ̂t(θ
ϵ
1)

and

(4.48) EQ̂
x

[
f(Ẑ

ξ̂(θϵ1)
t )

]
= EQ∗(θ)

x

[
f(Z

ξ(θϵ1)
t )

]
, for any t ≥ 0.

We claim that (Ẑ ξ̂(θ
ϵ
1)

t )t≥0 admits a stationary distribution under Q̂. Indeed, arguing as in the proof of
Proposition 4.2, we can show that there exists unique ν̂ϵ ∈ P(R+,B(R+)). Hence, from ergodicity
of Ẑ ξ̂(θ

ϵ
1), (4.45) and (4.48) we have

(4.49) ⟨f, ν̂ϵ⟩ = lim
T↑∞

1

T

∫ T

0
EQ̂
x

[
f(Ẑ

ξ̂(θϵ1)
t )

]
dt ≤ lim

T↑∞

1

T

∫ T

0
EQ∗(θ)
x

[
f(X

ξ∗(θ)
t )

]
dt = ⟨f, νθ,ϵ⟩,

which in turn, by monotonicity of F , leads to

(4.50) θϵ := F (⟨f, ν̂ϵ⟩) ≤ T θ.

To find an upper bound for T θ, is easier and we proceed as follows. SinceXξ∗(θ)
t ∈ (0, βϵ(θ)], Q∗

x(θ)-
a.s. and thanks to the monotonicity of f and F (see Assumption 2.4-(1))), we obtain

(4.51) T θ = F (⟨f, νθ,ϵ⟩) ≤ F (f(βϵ(θ)) ≤ F (f(βϵ(θ
ϵ))) =: θ

ϵ
,

for any θ ≥ θϵ. In the last inequality we have used the fact that the map θ 7→ βϵ(θ) is nonincreasing
(cf. Lemma 4.1). Thus, combining (4.50) and (4.51) we conclude that any potential fixed point of T
must lie in the convex, compact set

(4.52) Kϵ := [θϵ, θ
ϵ
] ⊂ R+.
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Step 2: Continuity of T . We define the map T1 : Kϵ → P(R+,B(R+)) by

(4.53) T1θ = νθ,ϵ, θ ∈ Kϵ.

The map is well-defined and continuous thanks to Proposition 4.2-(2). Next, we denote by T2 :
P(R+,B(R+)) → Kϵ the map

(4.54) T2ν := F

(∫
R+

f(x)ν(dx)

)
.

Since the functions f and F are continuous and the probability measures have compact support, the
map T2 is clearly continuous. Concluding, the map T := T2 ◦ T1 : Kϵ → Kϵ is continuous in the
convex compact set Kϵ and, by Schauder-Tychonof fixed-point theorem (Corollary 17.56 in [4]) there
exists θϵ ∈ Kϵ such that T θϵ = θϵ.

Step 3: Uniqueness. Let θϵ ∈ Kϵ be the fixed-point of T and let θ̃ϵ ∈ Kϵ be another fixed-point
of T such that θϵ ̸= θ̃ϵ. Without loss of generality, we assume that θϵ > θ̃ϵ. Then, by monotonicity of
θ 7→ βϵ(θ) (cf. Lemma 4.1), we have that βϵ(θϵ) ≤ βϵ(θ̃

ϵ), and mimicking Step 1 we obtain that

(4.55) θϵ = T θϵ ≤ T θ̃ϵ = θ̃ϵ,

which leads to a contradiction. □

5. A CASE STUDY: OPTIMAL EXTRACTION OF A NATURAL RESOURCE

This section is numerically illustrates our previous findings in a mean-field game of optimal extrac-
tion of natural resources under Knightian uncertainty. Inspired from [24] (see also [59]), we assume
that the (controlled) natural resource evolves (under P) according to the following dynamics

(5.1) dXξ
t = α(κ−Xξ

t )dt+ σXξ
t dW

P
t − dξt, Xξ

t = x,

where κ > 0 is the stationary average resource based on the capacity of the environment, α > 0
denotes the rate of extinction, σ > 0 the rate of fluctuations and ξ ∈ Ae(x) represents the cumulative
extraction strategy. At this point, it is important to show that the (uncontrolled) natural resource cannot
extinct, in other words, we have to show that 0 is unattainable. To that end, for arbitrary x0 > 0 we
have

(5.2) SP
x(x) = exp

(
−
∫ x

x0

2α(κ− y)

σ2y2
dy

)
∼ exp

(
2ακ

σ2x
+

2α

σ2
lnx

)
,

which readily implies that the Assumption 2.2 is satisfied.
Following Remark 2.3, the representative firm faces constant cost of extraction c > 0, uses an

isoelastic demand function in the style of Dixit-Stiglitz-Spence preferences (see also [35]), which
results into an instantaneous profit π(x, θ) = xδ(θ−(1+δ) + η), depending on a fixed price η > 0 and
on a price index θ−(1+δ), which, at equilibrium, is such that

(5.3) θ =

(∫
R+

xδν∞(dx)

)1/δ

,

where ν∞ is the stationary distribution of the optimally controlled resource stock.
From Remarks 2.1 and 2.2 we obtain that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1 and 4.1 are satis-

fied. Hence, there exists a unique equilibrium of the ergodic MFG (βϵ(θ
ϵ), θϵ,Q∗(θϵ)) which satisfies

Definition 2.3. Moreover, there exists ϕβϵ(θϵ)(·, θϵ) ∈ C1(R+) such that

1

2
σ2x2(ϕβϵ(θϵ))x(x, θ

ϵ) + (κ− αx)ϕβϵ(θϵ)(x, θ
ϵ)− ϵ

2
σ2x2(ϕβϵ(θϵ))

2(x, θϵ)(5.4)

= λϵ(θϵ)− xδ((θϵ)−(1+δ) + η), x < βϵ(θ
ϵ)

ϕβϵ(θϵ)(x, θ
ϵ) = −c, x ≥ βϵ(θ

ϵ),
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where λϵ(θϵ) = −c(1− βϵ(θ
ϵ)) + (βϵ(θ

ϵ))δ((θϵ)−(1+δ) + η)− ϵ
2σ

2(βϵ(θ
ϵ))2 (see (3.20) in Theorem

3.2).
Given that the equilibrium cannot be determined explicitly, we introduce a policy iteration algo-

rithm for its evaluation. The policy iteration method introduced by Bellman [8] is an algorithm to
solve numerically Hamilton-Jacobi-Bellman equations. Recently, it has been generalized to the case
of mean-field games and we refer to Cacace et al. [11] and Camilli and Tang [14]. Our algorithm is
inspired from [34] and it is described in the following table.

Algorithm 1: Policy Iteration Algorithm

Input: θ(0) = θϵ and ϵ << 1.
1 for n = 0 to N − 1 do

Input: β(0,n) = x̂ϵ(θ
(n)). Find ϕ(0,n)(x, θ(n)) ∈ C1(R+) solution to (3.10) for β = β(0,n)

and γ = 0.
2 for k = 0 to N − 1 do
3 Calculate

(5.5) β∗ = max{x ∈ (x̂ϵ(θ
(n)), β(k,n)) : ϕ(k)(x, θ(n)) = −c+ ϵ}.

Find a ϕ∗(·, θ(n)) ∈ C1(R+) solution to the following equations:
1

2
σ2(x)(ϕ∗)x(x, θ

(n)) + b(x)ϕ∗(x, θ(n))− ϵ

2
σ2(x)(ϕ∗)2(x, θ(n))(5.6)

= ℓϵ(β∗, θ(n))− π(x, θ(n)), x ≤ β∗,

ϕ∗(x, θ(n)) = −c, x ≥ β∗.(5.7)

Update policy as follows

(5.8) β(k+1,n) =

{
β∗, if ϕ∗(x, θ(n)) ≥ −c, for any x ∈ (0, β∗],

β(k,n), otherwise.

4 Update mean-field equilibrium as follows

(5.9) θ(n+1) =

{
F
( ∫

R+
f(x)νβ

(K,n)
(dx; θ(n))

)
=: θ∗, if θ∗ ∈ [θϵ, θ

ϵ
],

θ(n), otherwise.

5 return (β(N,N), θ(N)).

5.1. Sensitivity Analysis. In this section, using the policy iteration algorithm above, we numerically
explore the sensitivity of the mean-field equilibrium with respect to the level of ambiguity ϵ and the
level of volatility σ. Thereafter, we study the behavior of the stationary distribution of the optimally
controlled harvested resource for different levels of ambiguity. In our numerical example, we set
κ = α = σdefault = 1, η = c = 1, δ = 0.6 and ϵdefault = 1.

5.1.1. Level of Ambiguity ϵ. The level of ambiguity quantifies the sensitivity of the representative
firm to deviations from the real-world model P. In other words, it measures the impact of the worst-
case scenario model Q∗. In Figure (1a) we see that as the level of ambiguity increases, the reflection
boundary decreases. This happens due to the fact that, as the firm becomes more uncertain about
the future growth rate of the resource it decides to extract more frequently instead of waiting until
the natural resource will attain a higher level. This result is consistent with other studies on singular
stochastic control problems under uncertainty (see for instance Theorem 5.1 in [27]). Moreover, we
observe in Figure (1b) that also the equilibrium price decreases as the level of ambiguity increases.
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(A) βϵ(θϵ) vs. ϵ. (B) θϵ vs. ϵ.

FIGURE 1. Comparative statics of equilibrium w.r.t. level of ambiguity ϵ.

(A) βϵ(θϵ) vs. σ. (B) θϵ vs. σ.

FIGURE 2. Comparative statics of equilibria w.r.t. level of volatility σ.

Given constant demand, the increased frequency of extraction leads to higher supply, which in turn
results in a lower price.

5.1.2. Level of Volatility σ. In our model, each firm extracts from a natural resource that is subject
to exogenous risks, which are modeled through the Brownian motion W P. As illustrated in Figure
(2a), an increase in volatility leads to a decrease in the level of extraction. Moreover, as depicted in
Figure (2b), there is a reduction in the equilibrium price level as volatility increases. As volatility rises,
natural resource exhibit higher sensitivity to fluctuations, causing firms to extract more in an effort to
ensure long-term profitability. This increased extraction raises supply, which subsequently drives the
price down.

5.1.3. Effect of Ambiguity on firms’ distribution size. In continuation of Subsection 5.1.1, we examine
the distribution of firms at varying levels of ambiguity. As shown in Figure (3a), higher levels of am-
biguity lead to a concentration of firms at lower levels of natural resource extraction. This observation
aligns with the findings of Subsection 5.1.1, allowing us to conclude that, at equilibrium, the majority
of firms engage in low levels of extraction.
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(A) Stationary density function for different
levels of ambiguity.

(B) Absolute error of the algorithm for dif-
ferent number of iterations.

APPENDIX A. SOME TECHNICAL RESULTS

The proof of the next lemma is straightforward.

Lemma A.1. Let f ∈ C1((α, β)). Fix x ∈ (α, β) and y := sup{y ∈ (α, x) : f(y) = f(x)} and
y := inf{y ∈ (x, β) : f(y) = f(x)}, if they exist. If f ′(x) > 0 (resp., < 0), then f ′(y) ≤ 0 (resp.,
≥ 0) and f ′(y) ≤ 0 (resp., ≥ 0).

Recall ϕ·(x, θ) from Section 3.1. We then have the following Lemma from [27] (cf. Lemma 6).

Lemma A.2. Recall x̂ϵ(θ) as in Assumption 3.1-(3.7) and let x̂ϵ(θ) ≤ α < η. For any x ∈ (0,∞),
one has ϕα(x, θ) ≤ ϕη(x, θ).

We are now in the position of proving the continuity of β 7→ ϕβ(x, θ).

Lemma A.3 (Continuity of β 7→ ϕβ). Recall ϕβ from Section 3.1. For any fixed θ ∈ R+ and fixed
β ≥ x̂ϵ(θ), we have

(A.1) lim
δ↓0

|ϕβ+δ(y, θ)− ϕβ(y, θ)| = 0, for any y < β.

Proof. Let θ ∈ R+, y ∈ (0, β) and δ ∈ (0, 1). Given that ϕβ+δ and ϕβ solve (3.10) with γ = 0 and
β + δ and β, respectively, for y ∈ [x, β] we have that(

ϕβ+δ(y, θ)− ϕβ(y, θ)
)

(A.2)

=
(
ϕβ+δ(β, θ)− ϕβ(β, θ)

)
−
∫ β

y

(
ϕβ+δ(z, θ)− ϕβ(z, θ)

)
x
dy

=
(
ϕβ+δ(β, θ)− ϕβ(β, θ)

)
−
(
ℓϵ(β + δ, θ)− ℓϵ(β, θ)

)(∫ β

y

2

σ2(z)
dz

)
−
∫ β

y

(
ϵ(ϕβ+δ(z, θ) + ϕβ(z, θ))−

2b(z)

σ2(z)

)(
ϕβ+δ(z, θ)− ϕβ(z, θ)

)
dz.

From Lemma A.2 we know that ϕβ(z, θ) ≤ ϕβ+δ(z, θ) ≤ ϕβ+1(z, θ) for any z ∈ [y, β], while from
Proposition 3.3 we have that supx≥0

∣∣ϕβ+1(x, θ)
∣∣ ≤M(θ), for some M(θ) > 0. Hence, we have that∣∣ϕβ+δ(y, θ)− ϕβ(y, θ)

∣∣(A.3)

≤
∣∣ϕβ+δ(β, θ)− ϕβ(β, θ)

∣∣+ ∣∣ℓϵ(β + δ)− ℓϵ(β, θ)
∣∣( ∫ β

y

2

σ2(z)
dy

)
+

∫ β

y

(
2ϵM(θ) +

2|b(z)|
σ2(z)

)∣∣ϕ(β+δ(z, θ)− ϕβ(z, θ)
∣∣dz.
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An application of Grönwall’s inequality yields that∣∣ϕβ+δ(y, θ)− ϕβ(y, θ)
∣∣(A.4)

≤
(∣∣ϕβ+δ(β, θ)− ϕβ(β, θ)

∣∣+ (∫ β

y

2

σ2(z)
dz

)∣∣ℓϵ(β + δ, θ)− ℓϵ(β, θ)
∣∣)

· exp
(∫ β

y

(
2ϵM(θ) +

2|b(z)|
σ2(z)

)
dz

)
.

It remains to show that the right-hand side of (A.4) vanishes as δ ↓ 0. Let (δn)n∈N be an arbitrarily
fixed sequence such that δn ↓ 0, then introduce αn := ϕβ+δn(β, θ) − ϕβ(β, θ). From Lemma A.2
one has αn ≥ αn+1 and αn ≥ 0 for any n ∈ N, so that limn↑∞ αn = infn∈N αn = 0. Recalling that
β 7→ ℓϵ(β, θ), θ ∈ R+ is continuous (cf. Assumption 3.1) and taking limits in the right-hand side of
(A.4) we obtain

lim
n↑∞

(∣∣ϕβ+δn(β, θ)− ϕβ(β, θ)
∣∣+ (∫ β

y

2

σ2(z)
dz

)∣∣ℓϵ(β + δn, θ)− ℓϵ(β, θ)
∣∣) = 0,(A.5)

which, by (A.4), allows to conclude. □

Proposition A.1 (Comparison principle wrt θ). Recall ϕ·(x, θ) as in Section 3.1. For any β ∈ R+

and any θ1, θ2 ∈ R+ with θ1 ≤ θ2, the following hold:
(1) ϕβ(x, θ1) ≤ ϕβ(x, θ2) for any x ∈ R+.
(2) Let ϕ

β
∈ C1(R+) be the unique solution to

1

2
σ2(x)∂xϕβ(x) + b(x)ϕ

β
(x)− ϵ

2
σ2(x)(ϕ

β
(x))2 = ℓϵ(β)− κ(x), x ≤ β,(A.6)

ϕ
β
(x) = −c(x), x ≥ β,

with ℓϵ(β) := −b(β)c(β) + κ(β) − 1
2σ

2(β)(ϵc2(β) + cx(β)). Then, ϕβ(x, θ) ≥ ϕ
β
(x) for

any x ∈ R+.

Proof. We only prove (1) as the proof of item (2) will be analogous. Let γ < 0 and denote by ϕγβ(x, θ)
the classical solution to (3.10), and set ϕβ(x, θ) := ϕ0β(x, θ). We define ψγ(x) := ϕγβ(x, θ2) −
ϕβ(x, θ1), so that ψ satisfies

(A.7)


1
2σ

2(x)(ψγ)x(x) + b(x)ψγ(x)− ϵ
2σ

2(x)(ψγ)2(x)− ϵσ2ϕγβ(x, θ2)ψ
γ(x)

=
(
π(β, θ2)− π(β, θ1)

)
−
(
π(x, θ2)− π(x, θ1)

)
+ γ, x ∈ (0, β),

ψγ(x) = 0, x ∈ [β,∞).

For arbitrarily fixed x ≤ β, we rewrite the right-hand side of (A.7) as follows(
ℓϵ(β, θ2)− ℓϵ(β, θ1)

)
−
(
π(x, θ2)− π(x, θ1)

)
+ γ

=
(
π(β, θ2)− π(β, θ1)

)
−
(
π(x, θ2)− π(x, θ1)

)
+ γ

=

∫ θ2

θ1

πθ(β, θ)dθ −
∫ θ2

θ1

πθ(x, θ)dθ + γ =

∫ β

x

∫ θ2

θ1

πxθ(y, θ)dθdy + γ,(A.8)

In order to show that ψ(x) := ψ0(x) ≥ 0 for any x ≤ β we argue by contradiction. We assume
that there exists x1 := sup{x ∈ (0, β) : ψγ(x) = 0}. Then, plugging x = β in (A.7) and using the
boundary condition ψγ(β) = 0 we obtain 1

2σ
2(β)ψγx(β) = γ, which implies, ψγx(β) < 0. Therefore,

by plugging x = x1 in (A.7) we have

1

2
σ2(x1)ψ

γ
x(x1) =

∫ β

x1

∫ θ2

θ1

πxθ(y, θ)dθdy + γ < 0,(A.9)
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where last inequality is due to Assumption 2.3-(3). This implies ψγx(x1) < 0 and contradicts Lemma
A.1. Finally, sending γ → 0−, we complete the proof by Lemma 3.1. □

Proposition A.2 (Comparison principle for singularly controlled SDEs). Let Q ∈ P(Ω,F), x1, x2 ∈
R+ and θ1, θ2 ∈ R+ such that x1 ≤ x2 and θ1 ≤ θ2, then the following hold:

(1) Xx1,ξ∗(θ1)
t ≤ X

x1,ξ∗(θ2)
t , Q⊗ dt−a.s.;

(2) let ψ1, ψ2 : R+ → R be locally Lipschitz functions with ψ1(x) ≤ ψ2(x) for any x ∈ R+.
Then, if (X(i)

t )t≥0, i = 1, 2 are strong solutions to

(A.10) dX
(i)
t =

(
b(X

(i)
t ) + ψi(X

(i)
t )σ(X

(i)
t )

)
dt+ σ(X

(i)
t )dWQ

t − dξt, i = 1, 2

one has that X(1)
t ≤ X

(2)
t , Q⊗ dt−a.s.

Proof. The proof follows by combining Proposition 5.2.18 in [48] with Theorem 1.4.1 in [58]. □
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