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Abstract

Consider the Leibenson equation
∂tu = ∆pu

q,

where ∆pf = div(|∇f |p−2∇f) for p > 1 and q > 0, which is a simultaneous generalization of the
porous media and the p-Laplace equation. In this paper we identify the Leibenson equation as a
nonlinear Fokker–Planck equation and prove that it has a nonlinear Markov process in the sense of
McKean as its probabilistic counterpart. More precisely, we obtain a probabilistic representation of
its Barenblatt solutions as the one-dimensional marginal density curve of the unique solutions to the
associated McKean–Vlasov SDE. The latter is of novel type, since its coefficients depend pointwise
both on its solution’s time marginal densities and also on their first and second order derivatives.
Moreover, we show that these solutions constitute the aforementioned nonlinear Markov process,
which we call the Leibenson process. A further main result of this work is to prove that despite
the strong degeneracy of the diffusion and the irregularity of the drift coefficient (which is merely
of bounded variation) of the McKean–Vlasov SDE these solutions are probabilistically strong, i.e.,
measurable functionals of the driving Brownian motion and the initial condition.
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1 Introduction

This paper should be seen as a substantial step forward in a general program which, motivated by
McKean’s vision laid out in [49], we have started (see [3, 4, 5, 6, 7, 8, 9, 10, 11, 53]), namely to develop
a new theory whose aim is to construct a probabilistic counterpart for a large class of nonlinear
parabolic PDEs in the same way as has been done in the last 60 years for linear parabolic PDEs (see
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[14, 15, 22, 23, 24, 28, 29, 39, 40, 46, 50, 55, 56, 58, 59] and the references therein). The purpose
is to then transform problems about the PDE to the probabilistic counterpart and vice versa. This
probabilistic counterpart is as in the linear case a Markov process, but a nonlinear one in the sense
of McKean and in the (so far) most interesting cases they are given by the path laws of solutions to
very singular McKean–Vlasov SDEs. The mentioned transfer between analysis and probability was
extremely successful in the linear case with a huge literature (see above) until today. We are convinced
that there are very good chances that this also will happen in the nonlinear case.

In this paper, we realize the above program in the case where the nonlinear PDE is the Leibenson
equation ([45, 44])

∂tu(t, x) = ∆pu(t, x)q, (t, x) ∈ (0,∞)× Rd, (1.1)

which is well known as the prototype of a degenerate doubly nonlinear parabolic partial differential
equation, with its Barenblatt fundamental solutions (see [12, 13]).

Here q > 0 and ∆pf = div(|∇f |p−2∇f) denotes the p-Laplace operator, p > 1. The aforementioned
probabilistic counterpart is a nonlinear Markov process in the sense of McKean (see [49, 52]) consisting
of the unique solutions to the corresponding McKean–Vlasov stochastic differential equation (McKean–
Vlasov SDE) 

dX(t) = qp−1∇
(
|∇u(t,X(t))|p−2u(t,X(t))(q−1)(p−1)

)
dt

+
√

2qp−1
(
|∇u(t,X(t))|

p−2
2 u(t,X(t))

(q−1)(p−1)
2

)
dW (t),

LX(t)(dx) = u(t, x)dx,

(1.2)

with one-dimensional time marginal densities
dLX(t)

dx , t ≥ 0, equal to the Barenblatt solutions to (1.1)
(see (4.1) below). Here and throughout, dx denotes Lebesgue measure, W is a standard d-dimensional
Brownian motion and LX denotes the distribution of a random variable X. We call this nonlinear
Markov process the Leibenson process, see Definition 5.9 and Remark 5.8. We significantly extend the
techniques and results from the previous paper [3] of the first, third and last named author in which
the probabilistic counterpart of the slow diffusion p-Laplace special case (q = 1, p > 2) was constructed
and was called p-Brownian motion.

Before we give details on (1.1), (1.2) and our results in Part 1 and 2 below, we summarize the
main achievements of the present paper. First, in Part 1, we identify the Leibenson equation (1.1) as
a nonlinear Fokker–Planck equation (see (1.7)). This leads to the corresponding singular McKean–
Vlasov SDE (1.2) (p − 2 or (p − 1)(q − 1) may be strictly negative), for which we then establish
weak well-posedness for prescribed one-dimensional solution time marginals. Then we show that the
path measures of the solution processes constitute a nonlinear Markov process. This substantially
generalizes the approach from [3] to the doubly nonlinear Leibenson equation (1.1) for a large range
of pairs (p, q) ∈ (1,∞) × (0,∞), including (unlike [3]) the fast diffusion case p < 2 (with q > 1).
Furthermore, the corresponding McKean–Vlasov SDE (1.2) is the first of its kind in the literature,
since its coefficients depend both on the solutions’ time marginal densities as well as on their first
and second order derivatives. Second, in Part 2, we finally solve the problem left open in [3] about
p-Brownian motion even for the more general and doubly nonlinear Leibenson equation by proving
that the Leibenson process is probabilistically strong, i.e. the solutions to (1.2) with Barenblatt one-
dimensional time marginals are adapted measurable functionals of the driving Brownian motion. This
is a quite surprising result in view of the strong degeneracy of the diffusion coefficient in (1.2) (which,
as shown below, is compactly supported in space) and the irregular drift coefficient, which is merely
BV (and not Sobolev regular). Furthermore, in addition to the analytic proof for the crucial restricted
uniqueness result for the linearized Leibenson equation (see Theorem 7.4 below), we provide a genuinely
new probabilistic proof for this result (see Subsection 7.2).

Let us now describe our goals and results in more detail. Probabilistic representations of solutions
to (nonlinear) partial differential equations (PDEs) as time marginal densities of stochastic processes,
more precisely of canonically associated (nonlinear) Markov processes, allow to transfer analytic
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questions on well-posedness, asymptotic behavior and quantitative estimates for PDEs to probabilistic
ones in stochastic analysis and vice versa (see [7] for an example in the nonlinear case). In the linear
case the simplest, yet very instructive example is the relation between Brownian motion and the heat
equation

∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞)× Rd.

Its fundamental solution, the classical heat kernel p(t, x, y), consists of the one-dimensional time
marginal law densities of Brownian motion started at y ∈ Rd in the sense that

LWy(t)(dx) = p(t, x, y)dx, ∀t > 0, y ∈ Rd,

where we set W y(t) :=
√

2W (t) + y (the factor
√

2 may be exchanged for a factor 1
2 on the RHS of

the heat equation). Of course, W y is the unique probabilistically strong solution to the SDE

dX(t) =
√

2dW (t), X(0) = y,

and the family {Py}y∈Rd of path laws of {W y}y∈Rd constitutes a uniquely determined (linear)
Markov process with transition kernels y 7→ p(t, x, y)dx, t > 0.

The Leibenson equation. In this paper we develop comparable relations for the Leibenson
equation (1.1) and the McKean–Vlasov SDE (1.2). (1.1) is a simultaneous generalization of the porous
medium (p = 2) and the p-Laplace equation (q = 1). In hydrodynamics, (1.1) models filtration
of a turbulent compressible fluid in a porous medium. For more physical background, we refer, for
instance, to the introduction of [30]. In the linear case (p, q) = (2, 1), (1.1) is the heat equation. To
our knowledge, the Leibenson equation was first introduced in [45, 44]. In the past decades the theory
of existence, regularity, and qualitative and quantitative properties of its solutions was developed,
e.g., in [37, 38, 61, 30, 31, 63] and in further references mentioned therein. In [30] it is stated that
particularly interesting physical cases arise for q ≥ 1 and 3

2 ≤ p ≤ 2. We give more details on the
admissible values for (p, q) in our results below, but mention already here that we cover large parts of
this ”physical range”. We focus on the explicit Barenblatt solutions with point source initial datum
in the case q(p − 1) > 1 (see Definition 4.1), which were first obtained in [12] and can be considered
as the analgoue of the heat kernel for the heat equation (even though the Barenblatt solutions are
not fundamental solutions in the usual sense since, due to the nonlinearity of (1.1), one cannot build
from them solutions for non-Dirac initial data by simply taking convex combination). The other cases
q(p− 1) = 1 and q(p− 1) < 1 give rise to completely different regimes: For q(p− 1) > 1 the Barenblatt
solutions have finite speed of propagation, whereas in the other two regimes they have infinite speed
of propagation, see Section 4. We postpone the study of these other regimes and of more general
solutions to future work.

Goals and results. We split our program into two parts. The first part is the construction of
a uniquely determined nonlinear Markov process as the probabilistic counterpart of the Barenblatt
solutions to (1.1), consisting of solutions to (1.2), see Sections 2-5 and 7. The second part consists in
proving that these solutions are probabilistically strong, see Section 6.

Part 1: Construction of the Leibenson process. The derivation of a McKean–Vlasov SDE
associated with a nonlinear PDE follows by identifying the latter as a nonlinear Fokker–Planck equation
(FPE). These are parabolic equations for measures of type (here and throughout we use Einstein
summation convention)

∂tµt = ∂ij(aij(t, x, µt)µt)− ∂i(bi(t, x, µt)µt), (t, x) ∈ (s,∞)× Rd, (1.3)

where s ≥ 0 is the initial time, aij , bi : (0,∞) × Rd × M → R are measurable coefficients, M
is some subset of the set of signed locally finite Borel measures on Rd, and solutions are curves
[s,∞) 3 t 7→ µt ∈ M solving (1.3) in the (Schwartz) distributional sense (see Definition C.2 below).
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a = (aij)i,j≤d is assumed to take values in the space of nonnegative definite d× d-matrices, thus there
exists a (not necessarily unique) measurable square root σ = (σij)i,j≤d : (0,∞)×Rd×M→ Rd×d with
a = σσT . If one takes M to be a set P0 of probability measures on Rd, it is well-known that for any
weakly continuous probability measure-valued solution t 7→ µt ∈ P0 to (1.3) satisfying an additional
rather mild integrability condition (see Definition C.2), there exists a probabilistically weak solution
X = (X(t))t≥s to the McKean–Vlasov SDE,

dX(t) = b(t,X(t),LX(t))dt+
√

2σ(t,X(t),LX(t))dW (t), t > s, (1.4)

such that LX(t) = µt for all t ≥ s, see [1, 26, 64, 4, 5, 17, 59]. This result, called superposition
principle, provides a probabilistic counterpart to solutions of (1.3) by identifying the latter as the one-
dimensional time marginals of the paths of stochastic processes solving (1.4). For this, no regularity
assumption on the coefficients in x ∈ Rd or µ ∈ P0 is needed.

A particularly interesting type of (1.3) is given by the Nemytskii-case, where P0 is a set of absolutely
continuous measures (w.r.t. Lebesgue measure dx) and the dependence of aij and bi on µ ∈ P0 is
pointwise via its density, i.e.

aij(t, x, µ) = āij(t, x, u(x)), bi(t, x, µ) = b̄(t, x, u(x)),

for Borel coefficients āij , b̄i : (0,∞) × Rd × R → R and where µ(dx) = u(x)dx (see [10] for a large
number of concrete examples). Rewriting (1.3) as an equation for the density u(t) of µt, one arrives
at a nonlinear PDE

∂tu(t, x) = ∂ij
(
āij(t, x, u(t, x))u(t, x)

)
− ∂i

(
b̄i(t, x, u(t, x))u(t, x)

)
. (1.5)

In this case the corresponding McKean–Vlasov SDE is{
dX(t) = b̄(t,X(t), u(t,X(t)))dt+

√
2 σ̄(t,X(t), u(t,X(t)))dW (t),

LX(t)(dx) = u(t, x)dx,
(1.6)

where σ̄ = (σ̄ij)i,j≤d : (0,∞) × Rd × P0 → Rd×d is a measurable function with ā = σ̄σ̄T . Thus, for
every weakly continuous probability measure-valued solution u to (1.5) there is a stochastic process
solving (1.6). For instance, solutions to the generalized porous medium equation (PME) perturbed by
a nonlinear drift

∂tu(t, x) = ∆β(u(t, x))− div
(
D(x)b(u(t, x))

)
,

where D : Rd → Rd, b : R→ R+ and β : R→ R, are of this type with āij(t, x, u(x)) = δijβ(u(x)) and
b̄(t, x, u(x)) = D(x)b(u(x)), see [6, 8, 10] and the references therein. The classical PME is retrieved
with D = 0, β(r) = rm, m > 0 (cf. [65]).

Since the Leibenson equation at first sight is not of type (1.5), the identification of its McKean–
Vlasov SDE is not straightforward. Our approach is as follows. First, we show that (1.1) can be
rewritten as the nonlinear FPE

∂tu(t, x) = qp−1∆
(
|∇u(t, x)|p−2u(t, x)(p−1)(q−1)u(t, x)

)
−qp−1div

(
∇
(
|∇u(t, x)|p−2u(t, x)(p−1)(q−1)

)
u(t)

)
.

(1.7)
This is indeed of type (1.3) for coefficients

aij(t, x, µt) = qp−1δij |∇u(t, x)|p−2u(t, x)(p−1)(q−1), bi(t, x, µt) = qp−1∂i
(
|∇u(t, x)|p−2|u(t, x)|(p−1)(q−1)

)
,

(1.8)

where µt(dx) = u(t, x)dx. Details, in particular a proof of the equivalence of (1.1) and this FPE, are
given in Section 2. The coefficients a and b from (1.8) are not of Nemytskii-type, which would require
aij(t, x, ·) to depend on µt(dx) = u(t, x)dx only via u(t, x) (and similarly for bi). Instead, due to the
dependence on the gradient of u(t), aij(t, x, ·) depends on µt via the values of u(t) in an arbitrary
small open neighborhood of x (similarly for bi). Then the associated McKean–Vlasov SDE is (1.2).
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Our first result is the following construction of the probabilistic counterpart of solutions to the
Leibenson equation.

Theorem 1 (see Thm. 3.3, Cor. 3.4, Thm. 4.4 for details). Let d ≥ 1, p > 1, q > 0. For
every solution u to (1.1) consisting of probability densities with suitable regularity and integrability
assumptions there is a probabilistically weak solution to (1.2). If additionally q > 1

p−1 and p > 1+d
d ,

this result applies to the Barenblatt solutions u = wy, y ∈ Rd, (see Definition 4.1) to (1.1).

In the linear case, i.e. when aij and bi in (1.3) do not depend on µ, it is well-known that if for
every initial datum (s, δy) the FPE (1.3) has a unique weakly continuous probability solution (µs,yt )t≥s,
then the corresponding SDE (1.4) has a unique probabilistically weak solution from any initial datum
(s, δy) as well, and the family of these solutions forms a Markov process (for the definition of a Markov
process see Section 5.2) with transition kernels (y,A) 7→ µs,yt (A). This is not true for nonlinear FPEs
and their associated McKean–Vlasov SDEs, since the proof relies on the stability of the associated
martingale problem under convex combinations, which is lost in the nonlinear case. To overcome
this issue, inspired by McKean [49], in [52] the third and last-named author introduced nonlinear
Markov processes, and showed that under general assumptions a solution family to a nonlinear FPE
gives rise to a uniquely determined nonlinear Markov process, consisting of solution path laws to
the associated McKean–Vlasov SDE (see Section 5.2 for details). We stress that this result applies
to ill-posed situations, i.e. uniqueness of the nonlinear FPE-solutions is not required, but only a
”restricted linearized uniqueness” result, see Theorem 5.2 and Lemma 5.4. In previous work (cf. e.g.
[3, 7, 11, 52, 53] and also [10] and the references therein) this was utilized to construct nonlinear
Markov processes with one-dimensional time marginals given by solutions to nonlinear PDEs, as e.g.
Burgers’ and (generalized) PMEs, as well as 2D vorticity Euler and Navier–Stokes equations. In each
of these cases, it was first shown that the PDE under consideration can be written as a Neymtskii-type
FPE.

In the present paper we construct a nonlinear Markov process associated with the Barenblatt
solutions to (1.1) via [52, Theorem 3.8]. In particular, we have to prove a delicate restricted linearized
uniqueness result, which boils down to a highly nontrivial uniqueness result for the degenerate second-
order linear PDE (7.1), see Theorem 7.4. The conditions on p, q in Theorem 2 below are essentially
determined by the conditions in Theorem 7.4, which split into two different regimes, for which we
prove the uniqueness result separately. One part, proven via analytic methods, is a close adaptation
of the proof for the corresponding result in the p-Laplace special case. The second part is based on
genuinely new purely probabilistic methods. Our result is:

Theorem 2 (see Thm. 5.6 and Def. 5.9 for details). Let d ≥ 2, p > d
d−1 , q > 1

p−1 . If p < 2

assume additionally q > 2−p+d
d(p−1) (>

1
p−1 ). The family of McKean–Vlasov SDE-solutions from Theorem

1 with one-dimensional time marginals equal to the Barenblatt solutions to (1.1) constitutes a uniquely
determined nonlinear Markov process, which we call Leibenson process.

The construction of the Leibenson process is analogous to the construction of Brownian motion as
a Markov process from the classical heat kernel. The slow diffusion p-Laplace special case of Theorems
1 and 2, i.e. p > 2 and q = 1, was proven in [3], where the corresponding nonlinear Markov process
was called p-Brownian motion (for p = 2, one recovers Brownian motion).

Part 2: The Leibenson process is probabilistically strong. By construction, the Leibenson
process from Theorem 2 consists of probabilistically weak solutions to (1.2). It has been an imminent
and challenging open question whether these solutions are actually probabilistically strong, i.e. measurable
adapted functionals of the driving Brownian motion and the initial condition. For details on the
definition of probabilistically strong solutions, see Definition 6.1. In this paper, we answer this question
affirmatively via the following result. Note that this includes as a new result the p-Brownian motion
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case (p > 2, q = 1), for which the question of being a strong solution to its corresponding McKean–
Vlasov SDE was left open in [3].

Theorem 3 (see Thm. 6.3 for details). Let d ≥ 2, p > d−1
d , q > |p−2|+d

d(p−1) (> 1
p−1 ). Then, the

probabilistically weak solution (X,W ) to (1.2) with u = wy from Theorem 1 are probabilistically
strong from any strictly positive time δ > 0 on (i.e. they are measurable adapted functionals of the
driving Brownian motion W and X(δ)).

The proof follows from a restricted Yamada–Watanabe theorem [33, Theorem 1.3.1],[32], which in turn
relies on the existence of a probabilistically weak solution with one-dimensional time marginal law
densities wy(t + δ), t ≥ 0, (as provided by Theorem 1) and a restricted pathwise uniqueness result
for (1.2), see Theorem 6.13. Here, restricted means uniqueness in the class of solutions with one-
dimensional time marginals wy(t + δ, x)dx, t ≥ 0. Thus these marginals may be fixed beforehand,
which allows to simplify the McKean–Vlasov SDE (1.2) to a non-distribution dependent SDE

dX(t) = b̃(t,X(t))dt+ σ̃(t,X(t))dW (t),

with coefficients (using the definition of bi, aij from (1.8))

b̃i(t, x) := bi(t, x, w
y(t+ δ, x)dx), σ̃ij(t, x) :=

√
2aij(t, x, wy(t+ δ, x)dx), (t, x) ∈ R+ × Rd.

The proof of this pathwise uniqueness result poses one of the main technical challenges of the present
paper due to the degeneracy and irregularity of the diffusion coefficient σ̃, as well as the low differentiability
of the drift coefficient. Indeed, note that σ̃(t, ·) is compactly supported and not Lipschitz-continuous.
For p < 2, σ̃(t, ·) is even unbounded and discontinuous. Moreover, b̃ is only a function of bounded
variation in its spatial coordinate.

Although the literature on pathwise uniqueness results for SDEs, also in degenerate cases, is vast
(see, e.g., [54, 47, 62, 48, 66, 43], and in particular [20] for a result for bounded Sobolev-coefficients
with certain drifts of (spatial) bounded variation, see also [34] for a recent generalization), we could
not apply any of these results for our desired result.

Our proof heavily relies on a careful analysis of the degeneracy and discontinuity of σ̃ and (spatial)
jump sets of b̃(t, ·), t > 0, which in turn, of course, crucially relies on the explicit form of the Barenblatt
solutions wy. This analysis is based on the generalized Lipschitz-type estimate, sometimes called
Crippa–De Lellis estimate ([21, 20])

|f(x)− f(y)| .d (M |∇f |(x) + M |∇f |(y))|x− y| for dx-a.e. x, y ∈ Rd, (1.9)

(cf. Appendix D), where f ∈ BV (Rd), and (∇f)i denotes the (signed) measure-valued representative
of the Schwartz distributional derivative in direction xi of f . Here, M denotes the usual (Hardy–
Littlewood) maximal operator. The above estimate applied to b̃(t, ·) is essential for our pathwise
uniqueness result. Here, the key is to control the maximal function, which involves the singular part
(with respect to Lebesgue measure) of the drift’s gradient, which turns out to be comparable to the
(d − 1)-dimensional Hausdorff (or surface) measure restricted to the boundary of the spatial support
of the Barenblatt solution considered as a Borel measure on Rd, see Lemma 6.7. In Lemma 6.11, we
control the maximal operator applied to this measure by the estimate (6.11). This estimate is optimal,
see Remark 6.9, which can be seen from explicit calculation using elementary geometric arguments in
dimension d = 3, see Lemma D.7 (ii) in Appendix D. We also employ (1.9) for differences of certain
powers of σ̃. In contrast to existing results where the diffusion coefficient is in H1 with respect to its
spatial coordinate (cf. e.g. [18, 32, 36]), which yields sufficient control over the maximal function on
the right hand-side of the inequality when applied to f = σ̃(t, ·) (with power 1), such a control fails in
the present case. To overcome this issue, we employ an inequality based on the mean-value theorem
inspired by [25], see (6.28). A similar idea was also used in [35]. Furthermore, we use and extend the
method from the latter work in order to deal with the degeneracy and low regularity of σ̃.
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Structure of the paper. In Section 2 we introduce the Leibenson equation and its reformulation
as a nonlinear FPE. Section 3 contains the associated McKean–Vlasov SDE and the superposition
principle, via which we lift solutions to the Leibenson equation to solutions to this SDE. In Section 4,
we consider the Barenblatt solutions and apply to them this lift, while in Section 5 we construct the
Leibenson process, a nonlinear Markov process constructed via the superposition principle from the
Barenblatt solutions. A key ingredient for this is a delicate uniqueness result for a corresponding linear
PDE, which is stated and proven in Section 7. The proof consists of an analytic and a probabilistic
part. Before, we prove in Section 6 that the probabilistically weak solutions of the Leibenson process
are probabilistically strong. The appendix contains some material on Fokker–Planck equations, Hardy–
Littlewood maximal function and details on a few aspects of the proof of Theorems 6.13 and 7.4.

Notation. We write R+ := [0,∞), x ·y or 〈x, y〉Rd for the usual inner product on Rd, f+ = max(f, 0)
for a real-valued function f , and dx for Lebesgue measure on Rd.

Classical function spaces. For U ⊆ Rl, l ∈ N, we denote by Cn(U,Rk) the space of n-times
continuously differentiable maps f : U → Rk, and write C(U,Rk) = C0(U,Rk). We write C(U,Rk)0
to denote the set of all f ∈ C(U,Rk) with f(0) = 0. More generally, for a topological space X, we
write C(U,X) for the set of continuous maps from U to X. Let t ∈ U . By πt : C(U,X) → X, we
denote the canonical evaluation map at t, i.e. πt(w) := w(t). Cnc (U,Rk) and Cnb (U,Rk) are the subsets
of Cn(U,Rk) of compactly supported functions (in U) and those functions which together with its
partial derivatives up to order n are bounded, respectively. We set C∞(U,Rk) =

⋂
n∈N C

n(U,Rk), and
similarly for C∞c and C∞b . Partial time and spatial derivatives of a sufficiently smooth function are

denoted ∂tf = ∂f
∂t

, ∂if = ∂f
∂xi

and ∂ijf = ∂
∂xi

∂f
∂xj

.

Lp- and Sobolev spaces. For p ∈ [1,∞] and U ⊆ Rl, the usual spaces of (equivalence classes
of) Borel measurable p-integrable (w.r.t. dx) functions f : U → Rk are denoted Lp(U,Rk) with
norm | · |Lp(U,Rk), shortly | · |Lp(U) or simply | · |Lp when no confusion can occur. Lploc(U,Rk) are the
corresponding spaces of locally integrable functions. When integrability is considered with respect to
a measure µ instead of dx, we write Lp(U,Rk;µ). Wm,p

(loc)(U,R
k), m ∈ N, p ∈ [1,∞], are the usual

Sobolev spaces of (locally) p-integrable m-times weakly differentiable functions f : U → Rk with
(locally) p-integrable weak derivatives up to order m; we write Hm

(loc)(U,R
k) = Wm,2

(loc)(U,R
k), and

H−1(U,Rk) for the corresponding topological dual space. All these spaces are equipped with their
usual norms. If U ⊆ I × Rd, I ⊆ R+, we write Wm,n

p (U) for the space of p-integrable maps with n

p-integrable weak derivatives in t ∈ I and m p-integrable weak derivatives in x ∈ Rd. For a normed
space (X, || · ||), by Lp(loc)(I;X) we denote the space of measurable functions ϕ : I (⊆ R+) → X such

that [t 7→ ||ϕ(t)||] ∈ Lp(loc)(I,R). For all function spaces introduced here, we omit the state space Rk
from the notation when k = 1.

Measures and spaces of measures. M+
b is the space of nonnegative finite Borel measures on Rd.

The vague and weak topology on it are defined as usual, i.e. as the initial topology of the maps
µ 7→

´
Rd hdµ for all h ∈ Cc(Rd) and h ∈ Cb(Rd), respectively. For a topological space X, we write

P(X) for the space of probability measures on the Borel σ-algebra B(X), and simply P = P(Rd). δx
is the Dirac measure in x. For a random variable X between a measure space (X,X , µ) and some
measurable space, we write LX = µ◦X−1 for its distribution, i.e. the image (or pushforward) measure
of X with respect to µ. This includes the case where X = (X(t))t≥0 is a stochastic process on a
probability space (Ω,F ,P), considered as a path-valued map ω 7→ X(ω). We then say LX is the
(path) law of X. Let M ⊂ Rn be a submanifold. By S, we denote the standard surface measure on
(M,B(M)). Here, M is considered with respect to the subspace topology of Rn. We only consider the
case where M is a (d− 1)-dimensional sphere.

Functions of bounded variation. f ∈ L1(Rl,Rk) is said to be of bounded variation, in symbol
f ∈ BV (Rl;Rk), if all its components’ first-order Schwartz distributional derivatives ∂if

j are given by
a finite signed Borel measure on Rl, for all 1 ≤ i ≤ l, 1 ≤ j ≤ k.

(Hardy–Littlewood) Maximal function/operator and Muckenhoupt weights. For a brief introduction
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to both maximal operator (in symbol ’M’) and Muckenhoupt weights (in symbol ’Ap’), we refer to
Appendix D.

Probability theory. We say that (Ω,F , (Ft),P) is a stochastic basis if (Ω,F ,P) is a complete
probability space and (Ft) a right-continuous filtration on Ω augmented by the P-zero sets.

Miscellaneous. Let a, b ∈ R. We write a .(t) b and a . b if a ≤ Ctb or a ≤ Cb, where Ct, C > 0
are constants dependent and independent from a parameter t, respectively. Likewise, we write a ∼=t b
and a ∼= b, if a = Cb for a constant C dependent or independent from t, respectively.

2 The Leibenson equation and its Fokker–Planck reformulation

Let d ∈ N, q > 0, p > 1.

Definition 2.1. u : (0,∞)× Rd → R+ is a weak solution to the Leibenson equation (1.1), if

uq ∈ L1
loc((0,∞);W 1,1

loc (Rd)), u, |∇uq|p−1 ∈ L1
loc((0,∞)× Rd), (2.1)

t 7→ u(t, x)dx is vaguely continuous, and for all ψ ∈ C1
c ((0,∞)× Rd)

ˆ
(0,∞)×Rd

−u∂tψ + |∇uq|p−2∇uq · ∇ψ dxdt = 0. (2.2)

u has initial condition ν ∈ M+
b , if u(t, x)dx

t→0−−−→ ν vaguely. u is called probability solution, if dt-a.e.
u(t, x)dx and its initial datum are probability measures.

The only reason why we restrict attention to nonnegative solutions is that, ultimatively, we will
only be interested in probability solutions.

The following equivalent formulation via time-independent test functions will be useful. The
equivalence can be proven as in the proof of [16, Prop.6.1.2].

Lemma 2.2. If u satisfies (2.1), t 7→ u(t, x)xd is vaguely continuous and

|∇uq|p−1 ∈ L1
loc([0,∞)× Rd), (2.3)

then u is a weak solution with initial condition ν if and only if

ˆ
Rd
ϕu(t) dx =

ˆ
Rd
ϕdν −

ˆ t

0

ˆ
Rd
|∇uq|p−2∇uq · ∇ϕdxdt, ∀t ≥ 0, (2.4)

for every ϕ ∈ C1
c (Rd).

Even though the solutions we consider are vaguely continuous, the following remark may be useful
for extensions of our results to (a priori) discontinuous solutions.

Remark 2.3. The vague continuity assumption is not restrictive: If u satisfies (2.3) as well as all
assumptions of Definition 2.1 except for the continuity assumption and, in addition,

ess supt>0|u(t)|L1(Rd) <∞,

then t 7→ u(t, x)dx has a unique vaguely continuous (measure-valued) dt-version on [0,∞). This follows
from [51, Lemma 2.3]. Moreover, if |∇uq|p−1 ∈ L1

loc([0,∞), L1(Rd)), then [0,∞) 3 t 7→ |u(t)|L1(Rd) is

constant. The latter follows by considering (2.4) for an increasing sequence (ϕn)n∈N ⊆ C1
c (Rd) such

that 0 ≤ ϕn ≤ 1, ϕn(x) = 1 for |x| < n, supn |∇ϕn(x)| ≤ C for all x ∈ Rd for some C > 0 not
depending on n or x, and by letting n→∞.
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Associated nonlinear Fokker–Planck equation. Let F = F(p, q, d) ⊆ W 1,1
loc (Rd) be the set of

those nonnegative functions u ∈ W 1,1
loc (Rd) such that |∇u|p−2u(p−1)(q−1) ∈ W 1,1

loc (Rd). Note that both
p− 2 and (q− 1)(p− 1) could be negative and that hence some care is required in writing expressions
as |∇u|p−2u(q−1)(p−1), since |∇u| and u may vanish. For such terms to be well-defined in the sense
of Sobolev functions, an implicit assumption is that either functions raised to a negative power are
strictly positive dx-a.s. or, for products, that zeros raised to a negative power are multiplied by zeros
raised to a positive power. In the latter case we use the convention 0×∞ = 0.

Then let aij , bi : F × Rd → R, 1 ≤ i, j ≤ d, be defined as in (1.8), i.e.

aij(u, x) = qp−1δij |∇u(x)|p−2u(x)(p−1)(q−1), bi(u, x) = qp−1∂i
(
|∇u(x)|p−2|u(x)|(p−1)(q−1)

)
and consider the nonlinear Fokker–Planck equation (here and throughout using Einstein summation
convention)

∂tu(t, x) = ∂ij
(
aij(u(t), x)u(t, x)

)
− ∂i

(
bi(u(t), x)u(t, x)

)
, (t, x) ∈ (0,∞)× Rd,

i.e. (1.7). We stress that these coefficients are not of the usual Nemytskii-type, since they depend
pointwise on the gradient of the solution u, hence on the values of u in a(n arbitrary small) neighborhood
of x.

Definition 2.4. A nonnegative function u ∈ L1
loc((0,∞)× Rd) is a distributional solution to (1.7), if

u(t) ∈ F for all t > 0, t 7→ u(t, x)dx is vaguely continuous,

|∇u|p−2u(q−1)(p−1)+1, u ∂i
(
|∇u|p−2u(q−1)(p−1)

)
∈ L1

loc((0,∞)× Rd), i ∈ {1, . . . , d}, (2.5)

and for all ψ ∈ C2
c ((0,∞)× Rd)

ˆ
(0,∞)×Rd

(
∂tϕ+ qp−1|∇u|p−2u(p−1)(q−1)∆ψ + qp−1∇

(
|∇u|p−2u(p−1)(q−1)

)
· ∇ψ

)
udxdt = 0. (2.6)

u has initial condition ν ∈ M+
b , if u(t, x)dx

t→0−−−→ ν vaguely. u is called probability solution, if ν and
dt-a.e. u(t, x)dx are Borel probability measures.

The following lemma can be proven exactly as [16, Prop. 6.1.2].

Lemma 2.5. If u is as in the previous definition and satisfies (2.5) with [0,∞) replacing (0,∞), then
u is a distributional solution with initial condition ν if and only if for all t ≥ 0 and ϕ ∈ C2

c (Rd)
ˆ
Rd
ϕu(t) dx =

ˆ
Rd
ϕdν +

ˆ t

0

ˆ
Rd
qp−1

(
|∇u|p−2u(p−1)(q−1)∆ϕ+∇

(
|∇u|p−2u(p−1)(q−1)

)
· ∇ϕ

)
udxdt.

(2.7)

An analogue of Remark 2.3 holds in the Fokker–Planck case. We compare Definitions 2.1 and 2.4:

Lemma 2.6. Assume u satisfies (2.1) with

∇uq = quq−1∇u, (2.8)

u(t) ∈ F for all t > 0, (2.5), and t 7→ u(t, x)dx is vaguely continuous. Then u is a weak solution to
(1.1) in the sense of Definition 2.1 if and only if it is a distributional solution to (1.7) in the sense of
Definition 2.4.

If in addition u satisfies all integrability assumptions in time on [0,∞) instead of (0,∞) and has
initial condition ν, then u satisfies (2.4) if and only if it satisfies (2.7) (for all ϕ ∈ C1

c (Rd) and C2
c (Rd),

respectively).

Note that (2.8) does not follow from (2.1), since the latter does not imply local integrability of
uq−1∇u (in particular, note that q − 1 need not be positive).
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Proof. By assumption all regularity- and integrability properties of Definitions 2.1 and 2.4 are satisfied,
so it remains to prove equivalence of (2.2) and (2.6). To this end, let ψ ∈ C2

c ((0,∞)× Rd). Then

ˆ
(0,∞)×Rd

|∇uq|p−2∇uq · ∇ψ dxdt = qp−1
ˆ
(0,∞)×Rd

u(p−1)(q−1)|∇u|p−2∇u · ∇ψ dxdt

= qp−1
ˆ
(0,∞)×Rd

∇
(
u(p−1)(q−1)|∇u|p−2u

)
· ∇ψ −∇

(
u(p−1)(q−1)|∇u|p−2

)
u · ∇ψ dxdt

= −qp−1
ˆ
(0,∞)×Rd

(
|∇u|p−2u(p−1)(q−1)∆ψ +∇

(
u(p−1)(q−1)|∇u|p−2

)
· ∇ψ

)
udxdt,

where the first equality is due to (2.8), and the second follows from the product rule for Sobolev
functions. To extend (2.2) to all ψ ∈ C1

c ((0,∞) × Rd), one uses a simple approximation argument.
This concludes the first part of the proof. The second part follows immediately from the first part and
Lemmas 2.2 and 2.5.

3 Associated McKean–Vlasov SDE and superposition principle

For any nonlinear Fokker–Planck equation there is an associated McKean–Vlasov SDE with drift-
and diffusion-coefficient given by the drift and the square root of twice the diffusion coefficient of the
nonlinear Fokker–Planck equation. Thus, the McKean–Vlasov SDE associated with (1.7) is dX(t) = qp−1∇

(
|∇u(t,X(t))|p−2u(t,X(t))(q−1)(p−1)

)
dt+

√
2qp−1

(
|∇u(t,X(t))|

p−2
2 u(t,X(t))

(q−1)(p−1)
2

)
dW (t)

LX(t)(dx) = u(t, x)dx,

(3.1)

where W = (W (t))t≥0 is a standard d-dimensional Brownian motion. We stress that here u is not a
priori given, but part of the solution.

Definition 3.1. A probabilistically weak solution to (3.1) is an adapted stochastic process X =
(X(t))t≥0 on a stochastic basis (Ω,F , (Ft)t≥0,P) with an (Ft)-standard Brownian motion W such
that LX(t)(dx) = u(t, x)dx with u(t, ·) ∈ F for all t > 0,

E
[ ˆ T

0

(∣∣∇(|∇u(t,X(t))|p−2u(t,X(t))(q−1)(p−1)
)∣∣+|∇u(t,X(t))|p−2u(t,X(t))(q−1)(p−1)

)
dt

]
∀T > 0,

(3.2)
and P-a.s.

X(t) = X(0) + qp−1
ˆ t

0

∇
(
|∇u(t,X(t))|p−2u(t,X(t))(q−1)(p−1)

)
dt

+
√

2qp−1
ˆ t

0

|∇u(t,X(t))|
p−2
2 u(t,X(t))

(q−1)(p−1)
2 dW (t), ∀t ≥ 0.

The initial condition of X is the probability measure LX(0). We call the probability measure P on

B(C(R+,Rd)), P := P ◦ X−1, where X is considered as the path-valued map X : Ω → C(R+,Rd),
X(ω) = [t 7→ X(t)(ω)], a solution (path) law to (3.1).

Strictly speaking, a weak solution is a tuple ((Ω,F , (F)t≥0,P), X,W ). However, we usually shortly
refer to X as the weak solution or, when it is relevant in the context of strong solutions (see Definition
6.1), to (X,W ).
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Superposition principle. The crucial relation between a nonlinear Fokker–Planck equation and its
associated Mckean–Vlasov SDE is the following: By Itô’s formula, the curve of one-dimensional time
marginals of any McKean–Vlasov probabilistically weak solution is a weakly continuous probability
solution to the nonlinear Fokker–Planck equation (in the sense of Definition C.2). Conversely, by
the superposition principle, see [64, 4, 5], for any such distributional solution with sufficient spatial
integrability, there exists a probabilistically weak solution to the McKean–Vlasov SDE with one-
dimensional time marginals equal to this distributional solution. Now we state these relations precisely
for the nonlinear FPE (1.7) and its associated McKean–Vlasov SDE (3.1).

Proposition 3.2. Let X = (X(t))t≥0 be a probabilistically weak solution to (3.1). Then u, given by
t 7→ u(t, x)dx := LX(t)(dx), is a weakly continuous probability solution to (1.7). Thus, it is a weak
solution to (1.1), provided u satisfies (2.1) and (2.8).

Proof. The first assertion follows from a straightforward application of Itô’s formula, while the second
part follows from Lemma 2.6.

The following result yields probabilistic representations of weak solutions to the Leibenson equation
as one-dimensional marginal density curves of solutions to the associated McKean–Vlasov SDE.

Theorem 3.3 (Superposition principle). Let u be a weakly continuous probability solution to (1.7)
with initial condition ν such that

ˆ T

0

ˆ
Rd
|∇u|p−2u(q−1)(p−1)+1dxdt <∞, ∀T > 0 (3.3)

and ˆ T

0

ˆ
Rd
|∇
(
|∇u|p−2u(q−1)(p−1)

)
|udxdt <∞, ∀T > 0. (3.4)

Then there exists a probabilistically weak solution (X(t))t≥0 to (3.1) with LX(t)(dx) = u(t, x)dx for all
t > 0 and LX(0)(dx) = ν(dx).

The following corollary follows immediately from the previous theorem and Lemma 2.6.

Corollary 3.4. Let u be a weakly continuous weak probability solution to (1.1) with initial condition
ν such that u(t) ∈ F for all t > 0, and (2.8), (3.3)+(3.4) hold. Then there exists a probabilistically
weak solution (X(t))t≥0 to (3.1) with LX(t)(dx) = u(t, x)dx for all t > 0 and LX(0)(dx) = ν(dx).

Proof of Theorem 3.3. Consider u as a solution (in the sense of Definition C.1) to the linear FPE with
coefficients ã and b̃ obtained by a priori fixing u in a and b from (1.8), i.e.

ãij(t, x) := qp−1δij |∇u(x)|p−2|u(x)|(p−1)(q−1), b̃i(t, x) := qp−1∂i
(
|∇u(x)|p−2|u(x)|(p−1)(q−1)

)
. (3.5)

By [64, Thm.2.5] (which applies due to (3.3)+(3.4)) one obtains a probabilistically weak solution
X = (X(t))t≥0 to the corresponding (non-distribution dependent) SDE with coefficients b̃i as above
and σ̃ = (σ̃ij) given by 1

2 σ̃σ̃
T = ã(t, x) such that LX(t)(dx) = u(t, x)dx. Clearly, X then solves

(3.1).

4 Barenblatt solutions

The Leibenson equation admits explicit solutions with point source initial condition, known as Barenblatt
solutions. Three very different regimes arise, subject to q(p−1) being strictly greater, equal, or strictly
less than 1. In this paper, we focus on the first case. This includes the p-Laplace case (q = 1, p > 2).
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Definition 4.1 (Barenblatt solutions). Let d ∈ N, p > 1, q > 0 such that q(p − 1) > 1. For y ∈ Rd,
the function

wy(t, x) := t−
d
β

[
C − κ

(
t−

1
β |x− y|

) p
p−1

]γ
+

, (t, x) ∈ (0,∞)× Rd, (4.1)

where

β = p+ d(q(p− 1)− 1), γ =
p− 1

q(p− 1)− 1
, κ =

q(p− 1)− 1

pq
β−

1
p−1 ,

and C > 0 is any constant, is called Barenblatt solution to (1.1).

A straightforward calculation shows that there is a unique choice C = C(d, p, q) independent of t
such that

´
Rd w

y(t, x)dx = 1 for all t > 0. We fix this choice, so that t 7→ wy(t, x)dx is a curve of
probability measures. We often abbreviate

f(t, x) := C − κ
(
t−

1
β |x|

) p
p−1 .

Furthermore, we set

R(t) :=

(
C

κ

) p−1
p

t
1
β . (4.2)

Remark 4.2. Note that β > p and γ, κ > 0.

For the definition of Barenblatt solutions in the cases q(p−1) = 1 and 0 < q(p−1) < 1, we refer to
[12, 30]. In these cases the solutions behave fundamentally different than those in (4.1). In particular,
while wy above has finite speed of propagation, the Barenblatt solutions in the case q(p− 1) = 1 and
q(p− 1) < 1 have infinite speed of propagation. We postpone the study of these case to future work.

From now on, we consider without loss of generality y = 0 and write w = w0. All subsequent
statements hold for any y ∈ Rd, with obvious modifications where necessary.

Lemma 4.3. w has the following properties.

(i) w is a weakly continuous weak probability solution to (1.1) and attains its initial datum δ0 weakly
in the sense of measures, i.e. w(t, x)dx→ δ0 weakly as t→ 0.

(ii) For all t > 0, w(t) ∈ Cc(Rd) and suppw(t) = BR(t)(y), with R(t) as in (4.2).

(iii) w ∈ C((0,∞)× Rd) ∩
⋂

0<r<R Cc([r,R]× Rd) ∩
⋂
r>0 L

∞((r,∞)× Rd).

Proof. The nonnegativity as well as (ii) and (iii) follow immediately from the definition of w. The weak
continuity of (0,∞) 3 t 7→ w(t, x)dx follows from the continuity of w in (t, x) ∈ (0,∞)× Rd, and the

weak continuity in t = 0 follows by a straightforward calculation via the transformation Φ(x) = t
1
β x

(similarly to the proof that the classical heat kernel converges weakly to δ0 when t→ 0). That w solves
(1.1) in the sense that both sides of the equation are well-defined and equal in the sense of Sobolev
spaces is a straightforward calculation. In particular, w is a weak solution to (1.1) in the sense of
Definition 2.1.

4.1 Probabilistic representation for Barenblatt solutions

We apply Corollary 3.4 to the Barenblatt solution w. More precisely, we have the following result.

Theorem 4.4. Let d ∈ N, p > 1, q > 0 such that q(p−1) > 1 and p > 1+d
d . There is a probabilistically

weak solution (X(t))t≥0 to (3.1) such that LX(t)(dx) = w(t, x)dx for all t ≥ 0 (here and below with a
slight abuse of notation we write w(0, x)dx = δ0(dx)).

Recall that we write ”.” and ”.t” whenever we suppress absolute multiplicative constants, independent
or dependent of t, respectively, in an inequality.
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Proof. We show that w satisfies the assumptions of Corollary 3.4. That w is a weakly continuous
probability solution to (1.1) was already stated in Lemma 4.3, so it remains to prove u(t) ∈ F for
all t > 0, (3.3)-(3.4) and (2.8). To this end, we first prove w(t) ∈ W 1,1(Rd) for all t > 0. Note that
w(t) ∈ L1(Rd) follows from Lemma 4.3. If γ ≥ 1, w(t) ∈ W 1,1(Rd) is obvious, and [recall that we set

f(t, x) = C − κ
(
t−

1
β |x|

) p
p−1 ]

∇w(t, x) = γt−
d
β f(t, x)γ−1∇f(t, x)1f(t)≥0(x). (4.3)

Since f is locally bounded, {f(t) ≥ 0} is compact and

∇f(t, x) = −κ p

p− 1
t−

p
β(p−1) |x|

2−p
p−1x, (4.4)

we have indeed ∇w(t) ∈ L1(Rd,Rd). If 0 < γ < 1, the RHS of (4.3) is still the weak gradient
of w(t), provided we can show f(t)γ−1∇f(t)1f(t)≥0 ∈ L1(Rd,Rd). Since f(t, x)γ−1|∇f(t, x)| .t
|x|

1
p−1 f(t, x)γ−1, this translates into proving f(t)γ−11f(t)≥0 ∈ L1(Rd). Using polar coordinates and

the transformation rule, we find

ˆ
Rd
f(t, x)γ−11f(t)≥0(x)dx .t

ˆ C

0

rγ−1
(
C − r
κ

) (d−1)(p−1)−1
p

dr. (4.5)

Splitting the latter in integrals over (0, C2 ) and (C2 , C), we obtain the conditions

γ − 1 > −1 and
(d− 1)(p− 1)− 1

p
> −1

to ensure finiteness of the RHS in (4.5). Since γ > 0 and the second inequality is equivalent to
dp− d > 0 and we assume p > 1, we obtain w(t) ∈W 1,1(Rd) for all t > 0.

Next, we show |∇w(t)|p−2w(t)(q−1)(p−1) ∈W 1,1(Rd) for all t > 0. From (4.3)-(4.4), we see

|∇w(t, x)|p−2w(q−1)(p−1) ∼= t−
d
β (p−2)−

p(p−2)
β(p−1)

− dβ (q−1)(p−1)1f(t)≥0(x)f(t, x)(γ−1)(p−2)+γ(q−1)(p−1)|x|
p−2
p−1 ,

where we recall that by ∼= we indicate that we suppress absolute multiplicative constants on the RHS,
which are in particular independent of t and x. Note that at least one of the exponents p − 2 and
(q−1)(p−1) is strictly positive, thus we can use our convention 0×∞ = 0 to obtain the factor 1f(t)≥0
on the RHS above. Indeed, if p < 2, then q(p − 1) > 1 implies (q − 1)(p − 1) > 0. To continue, note
that

(γ − 1)(p− 2) + γ(q − 1)(p− 1) = 1, (4.6)

since this can easily be seen to be equivalent to

(p− 1)(γ − 1 + γ(q − 1)) + 1− γ = 1 ⇐⇒ (p− 1)(γq − 1) = γ,

which is true by definition of γ. Thus

1f(t)≥0f(t)(γ−1)(p−2)+γ(q−1)(p−1) = f(t)+ ∈ (W 1,1 ∩W 1,∞)(Rd).

Since p > d+1
d > d+2

d+1 , x 7→ |x|
p−2
p−1 is in W 1,1

loc (Rd), hence we obtain that |∇w(t)|p−2w(t)(q−1)(p−1) is
weakly differentiable, and, by the product rule, for a.e. x

|∇
(
|∇w(t, x)|p−2w(t, x)(q−1)(p−1)

)
| . t−

d
β (p−2)−

p(p−2)
β(p−1)

− dβ (q−1)(p−1)1f(t)≥0
[
t−

p
β(p−1) |x|

1
p−1 + f(t, x)+|x|−

1
p−1
]
.

(4.7)

To obtain that this term is in L1(Rd,Rd) for arbitrary fixed t > 0, it suffices to note that |x|−
p
p−1x ∈

L1
loc(Rd,Rd), which is true since p > d+1

d . Hence u(t) ∈ F for all t > 0.
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Regarding (2.8), we have uq(t, x) = t−
qd
β fγq+ (t, x), with γq > 1 by definition of γ, and hence one

can simply calculate ∇uq by the chain rule to deduce (2.8).
Regarding (3.3) we see that, by (4.3)-(4.4)

ˆ T

0

ˆ
Rd
|∇w(t, x)|p−2w(t, x)(q−1)(p−1)+1 dxdt

.
ˆ T

0

ˆ
BR(t)(0)

t−(p−2)(
d
β+

p
β(p−1)

)− dβ [(q−1)(p−1)+1]f(t, x)1+γ |x|
p−2
p−1 dxdt

.
ˆ T

0

t−(p−2)(
d
β+

p
β(p−1)

)− dβ [(q−1)(p−1)+1]

ˆ
BR(t)(0)

|x|
p−2
p−1 dxdt, (4.8)

where we used
(γ − 1)(p− 2) + γ(q − 1)(p− 1) + γ = 1 + γ

(see (4.6)) and 1 + γ > 0. Using polar coordinates and p > d+2
d+1 , we find

ˆ
BR(t)(0)

|x|
p−2
p−1 dx .

ˆ R(t)

0

r
p−2
p−1+d−1dr . t

p−2
β(p−1)

+ d
β .

Thus the RHS of (4.8) is further estimated from above by

ˆ T

0

t−(p−2)(
d
β+

p
β(p−1)

)− dβ [(q−1)(p−1)]+
p−2

β(p−1) dt

i.e. to conclude its finiteness we need

−(p− 2)

(
d

β
+

p

β(p− 1)

)
− d

β
[(q − 1)(p− 1)] +

p− 2

β(p− 1)
> −1.

By a direct calculation, this inequality can be seen to be equivalent to p − 2 < p and is hence true.
This concludes the proof of (3.3).

Finally, regarding (3.4), we consider (4.7) to estimate

ˆ T

0

ˆ
Rd
|∇
(
|∇w|p−2w(q−1)(p−1))|w dxdt

.
ˆ T

0

ˆ
BR(t)(0)

t−
d
β (p−1)−

p(p−2)
β(p−1)

− dβ (q−1)(p−1)
[
t−

p
β(p−1) |x|

1
p−1 + |x|−

1
p−1

]
dxdt =: I + II.

We further estimate, using again p > d+1
d to have |x|−

1
p−1 ∈ L1

loc(Rd),

I .
ˆ T

0

t−
d
β (p−2)−

p(p−1)−1
β(p−1)

− dβ (q−1)(p−1)dt

and

II .
ˆ T

0

t−
d
β (p−2)−

p(p−2)+1
β(p−1)

− dβ (q−1)(p−1)dt.

Elementary calculations show

min

(
− d

β
(p− 2)− p(p− 1)− 1

β(p− 1)
− d

β
(q− 1)(p− 1),− d

β
(p− 2)− p(p− 2) + 1

β(p− 1)
− d

β
(q− 1)(p− 1)

)
> −1,

whereby (3.4) follows and the proof is complete.
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Since the computations from the previous proof obviously remain valid for wy instead of w, we
obtain:

Corollary 4.5. Let d ∈ N, p > 1, q > 0 such that q(p − 1) > 1, p > 1+d
d and y ∈ Rd. There is

a probabilistically weak solution Xy = (Xy(t))t≥0 to (3.1) such that LXy(t)(dx) = wy(t, x)dx for all
t ≥ 0 (where again with a slight abuse of notation we write wy(0, x)dx = δy(dx)).

For later use, we state the following remark.

Remark 4.6. Definitions 2.1, 2.4 and 3.1 can be modified to initial times s > 0 instead of s = 0 in
the obvious way, and all previously stated results remain valid accordingly. In particular, Corollary
4.5 generalizes in the sense that for all initial pairs (s, y), there is a probabilistically weak solution
Xs,y = (Xs,y(t))t≥s to (3.1) such that LXs,y(t) = wy(t− s, x)dx for all t ≥ s.

5 Associated nonlinear Markov process

Our next goal is to construct a nonlinear Markov process consisting of the path laws of the solutions
Xs,y from the previous remark, and to show that this Markov process is uniquely determined by the
Barenblatt solutions to (1.1). First, we briefly recall the linear case, i.e. (p, q) = (2, 1).

5.1 The classical linear case

In the linear case, i.e. p = 2, q = 1, when (1.1) is the heat equation, its fundamental solutions
given by the classical heat kernel p(t, x, y), t > 0, x, y ∈ Rd, uniquely determine a Markov process
(Py)y∈Rd ⊆ P(C([0,∞),Rd) with one-dimensional time marginals Py ◦ π−1t = p(t, x, y)dx (for the
definition of a Markov process, see below). We recall that here and below πt : C(R+,Rd) → Rd,
πt(w) = w(t), denotes the canonical projection at time t ≥ 0. This Markov process is Brownian
motion, P0 is the standard Wiener measure, and any stochastic process (Xy(t))t≥0 with path law Py
is a Brownian motion started in y ∈ Rd. Of course, Py is the unique solution law of the associated
SDE

dXy(t) = dW (t), t ≥ 0, Xy(0) = y.

5.2 Nonlinear Markov processes

The following definition of nonlinear Markov processes is inspired by McKean [49] and was first studied
in [52]. It extends the usual notion of Markov property in a suitable way in order to cover path laws
of McKean–Vlasov solutions. We refer to [52] for more details.

We use the following notation. For 0 ≤ s ≤ t, we denote by πst the projection πst : C([s,∞),Rd)→
Rd, πst (w) := w(t), and we set Fs,t := σ(πsu, s ≤ u ≤ t).

Definition 5.1. Let P0 ⊆ P. A nonlinear Markov process is a family (Ps,ζ)(s,ζ)∈[0,∞)×P0
, Ps,ζ ∈

P(C([s,∞),Rd)), such that for all 0 ≤ s ≤ r ≤ t, ζ ∈ P0

(i) µs,ζt := Ps,ζ ◦ (πst )
−1 ∈ P0,

(ii) the nonlinear Markov property holds, i.e.

Ps,ζ(π
s
t ∈ A|Fs,r)(·) = p(s,ζ),(r,πsr(·))(π

r
t ∈ A) Ps,ζ-a.s. for all A ∈ B(Rd), (5.1)

where (p(s,ζ),(r,z))z∈Rd is a regular conditional probability kernel from Rd to B(C([r,∞),Rd)) of

Pr,µs,ζr [ · |πrr=z], z∈Rd (i.e. in particular p(s,ζ),(r,z)∈P(C([r,∞),Rd)) and p(s,ζ),(r,z)(π
r
r=z) = 1).
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The case of a classical (time-inhomogeneous) Markov process (Ps,y)y∈Rd is contained in the previous
definition. In this case, (Ps,ζ)s≥0,ζ∈P , where Ps,ζ :=

´
Rd Ps,ydζ(y), satisfies the previous definition with

P0 = P and p(s,y)(r,z) = Pr,z, for all 0 ≤ s ≤ r, z ∈ Rd, ζ ∈ P. Then (5.1) reduces to the usual time-
inhomogeneous Markov property, and the Chapman–Kolmogorov equations for the one-dimensional
time marginals µs,yt = Ps,y ◦ (πst )

−1 hold, i.e.

µs,yt =

ˆ
Rd
µr,zt dµs,yr (z), ∀0 ≤ s ≤ r ≤ t, y ∈ Rd. (5.2)

In the nonlinear case the map ζ → Ps,ζ is not linear on P0, even if P0 = P (which we do not assume).
Thus one loses the Chapman–Kolmogorov equations, but the one-dimensional time marginals of a
nonlinear Markov process still satisfy the flow property

µs,ζt ∈ P0, µs,ζt = µ
r,µs,ζr
t , ∀0 ≤ s ≤ r ≤ t, ζ ∈ P0, (5.3)

(in the linear case, this follows from (5.2)). A family {µs,ζ}s≥0,ζ∈P0 , µs,ζ = (µs,ζt )t≥s of weakly
continuous solutions to the nonlinear FPE (1.3) in the sense of Definition C.2 with initial condition
µs,ζs = ζ and satisfying (5.3) is called a P0-solution flow (1.3).

The following result from [52], which allows to construct nonlinear Markov processes consisting
of solution laws to McKean–Vlasov SDEs with one-dimensional time marginals given by a prescribed
family of solution curves to the associated nonlinear FPE, is the key for our purposes in this chapter.

Theorem 5.2. [52, Theorems 3.4+3.8] Let P0 ⊆ P and {µs,ζ}s≥0,ζ∈P0
be a P0-solution flow to (1.3)

such that the following hypothesis holds.
(P0-linex). µ

s,ζ is an extreme point of the set of all weakly continuous probability solutions to the

linear FPE with coefficients (t, x) 7→ aij(t, x, µ
s,ζ
t ) and (t, x) 7→ bi(t, x, µ

s,ζ
t ) with initial condition (s, ζ)

in the sense of Definition C.1 for each (s, ζ) ∈ R+ × P0.

Then, for each (s, ζ) ∈ R+ × P0 there is a unique solution law Ps,ζ to the McKean–Vlasov SDE
(1.4) such that

Ps,ζ ◦ (πst )
−1 = µs,ζt , ∀0 ≤ s ≤ t, ζ ∈ P0, (5.4)

and (Ps,ζ)s≥0,ζ∈P0
is a nonlinear Markov process in the sense of Definition 5.1. In particular, this

nonlinear Markov process is uniquely determined by its one-dimensional time marginals (µs,ζt )0≤s≤t,ζ∈P0

and equation (1.4).

Remark 5.3. A relation of extremality and Markov property was discovered in connection with
constructing Markov selections (see [41] and also [59, 27]) in the situation where a (linear) martingale
problem has more than one solution for Dirac measures as intial conditions (see [60]). But this is a
result on path space and in the opposite direction, namely proving that the Markov selection consists
of extremal measures in the convex set of all solutions to the (linear) martingale problem with initial
condition a Dirac measure. So, our result above is a converse result, but for the time marginals, i.e.
on state space, and which also holds in the nonlinear case.

Regarding applications, the equivalence of the above extremality condition and the following
restricted linearized uniqueness result has turned out very useful.

Lemma 5.4 ([52, Lemma 3.5]). Let (s, ζ) ∈ R+ × P0. In the situation of the previous theorem,

µs,ζ satisfies the claimed extremality condition if and only if (µs,ζt )t≥s is the unique weakly continuous

probability solution to the linear FPE with coefficients (t, x) 7→ aij(t, x, µ
s,ζ
t ) and (t, x) 7→ bi(t, x, µ

s,ζ
t )

and initial condition (s, ζ) in the sense of Definition C.1 in the class{
(νt)t≥s ⊆ P : νt ≤ Cµs,ζt , t ≥ s, for some C > 0

}
(”restricted linearized distributional uniqueness”).
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In fact, we need the following corollary of the previous theorem. The intuition is that the assertion
of the previous theorem remains true when condition (P0-linex) holds for less initial data, at the price
of a uniqueness assertion for the corresponding solution path laws for less initial data. However, as we
will see, in our situation, a posteriori we can restore the uniqueness assertion to all initial data.

Corollary 5.5. [52, Corollary 3.10] Let P0 ⊆ P0 ⊆ P and suppose {µs,ζ}s≥0,ζ∈P0 is a P0-solution
flow to (1.3) such that the following two hypotheses hold.

(P0-linex). µ
s,ζ is an extreme point in the set of all weakly continuous probability solutions to the

linear FPE with coefficients (t, x) 7→ aij(t, x, µ
s,ζ
t ) and (t, x) 7→ bi(t, x, µ

s,ζ
t ) with initial condition (s, ζ)

in the sense of Definition C.1 for each (s, ζ) ∈ R+ ×P0

and
(P0-smoothing). µs,ζt ∈ P0 for all 0 ≤ s < t, ζ ∈ P0.

Then, there is a nonlinear Markov process (Ps,ζ)s≥0,ζ∈P0
with (5.4), consisting of solution path laws

to (1.4). In this case, the uniqueness-assertion for Ps,ζ of Theorem 5.2 holds for all (s, ζ) ∈ R+ ×P0.

In the next subsection we apply this corollary to the NLFPE (1.7) and the associated McKean–
Vlasov SDE (3.1).

5.3 Application to Leibenson equation and its Barenblatt solutions

Let
P0 := {wy(δ, x)dx : y ∈ Rd, δ ≥ 0},

where with some abuse of notation we write wy(0, x)dx = δy(dx). For each ζ ∈ P0, the pair (δ, y) ∈
[0,∞)× Rd such that ζ = wy(δ, x)dx is unique.

Theorem 5.6. Let d ≥ 2, p > d
d−1 , q > 0 such that q(p − 1) > 1. If p < 2, assume additionally that

q(p− 1) > 2−p+d
d (> 1).

(i) Let (s, ζ) ∈ [0,∞) × P0, ζ = wy(δ, x)dx. The set of solution laws to the McKean–Vlasov SDE
(3.1) with one-dimensional time marginals wy(δ + t− s, x)dx, t ≥ s, and initial condition (s, ζ)
contains exactly one element Ps,ζ . The family (Ps,ζ)s≥0,ζ∈P0

is a nonlinear Markov process in
the sense of Definition 5.1. In particular, this nonlinear Markov process is uniquely determined
by (3.1) and ωy(t), y ∈ Rd, t ≥ 0.

(ii) (Ps,ζ)s≥0,ζ∈P0 is time-homogeneous, i.e. Ps,ζ = P0,ζ ◦ Π̂−1s for all (s, ζ) ∈ [0,∞)× P0, where

Π̂s : C([0,∞),Rd)→ C([s,∞),Rd), Π̂s : (ω(t))t≥0 7→ (ω(t− s))t≥s. (5.5)

Moreover, for ζ = wy(δ, x)dx, we have P0,ζ = P0,y ◦ (Π0
δ)
−1 (the map Π0

δ is defined in (5.7)
below).

Remark 5.7. The p-Laplace-case of this result, i.e. p > 2, q = 1, was proven in [3].

We stress that in the following proof the times s and δ are not related. In particular, for the initial
condition ζ = wy(δ, x)dx, we not only consider the initial pair (δ, ζ), but necessarily any (s, ζ), s ≥ 0.
Set

P0 := {wy(δ, x)dx : y ∈ Rd, δ > 0} = P0 \ {δy : y ∈ Rd}. (5.6)

A crucial ingredient of the proof is Theorem 7.4, which is formulated and proven in Section 7 below.

Proof of Theorem 5.6.
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(i) Setting, for ζ = wy(δ, x)dx, δ ≥ 0, y ∈ Rd,

µs,ζt := wy(δ + t− s, x)dx, t ≥ s,

it is straightforward to check that the family of probability measures {µs,ζt }s≥0,t≥s,ζ∈P0
has

the flow property (5.3). From Lemmas 4.3 and 2.6 and from what was shown in the proof of

Theorem 4.4 it follows that (µs,ζt )t≥s is a weakly continuous probability solution to the nonlinear
FPE (1.7) with initial condition (s, ζ) in the sense of Definition C.2. By Theorem 7.4, Lemma
5.4 and Remark 7.6 below, condition (P0-linex) holds. Moreover, by definition of P0 and P0, we

have µs,ζt ∈ P0 for all (s, t, ζ) such that either s ≤ t and ζ ∈ P0 or s < t and ζ ∈ P0. Thus,
Corollary 5.5 applies and yields:

There is a nonlinear Markov process (Ps,ζ)(s,ζ)∈[0,∞)×P0
, Ps,ζ ∈ P(C([s,∞),Rd)), such that

(I) Ps,ζ ◦ (πst )
−1 = µs,ζt , t ≥ s;

(II) Ps,ζ is a solution path law to the McKean–Vlasov SDE (3.1) on [s,∞);

(III) For s ≥ 0 and ζ ∈ P0, Ps,ζ is unique with properties (I)–(II).

Therefore, since P0\P0 = {δy : y ∈ Rd}, it remains to prove the following claim.

Claim. For (s, y) ∈ [0,∞)× Rd, there is a unique path law Ps,δy with properties (I)–(II).

Proof of Claim. Let P 1, P 2 have properties (I)–(II) for s ≥ 0, ζ = δy, y ∈ Rd. For s, r ≥ 0, we
define the map Πs

r : C([s,∞),Rd)→ C([s,∞),Rd) via

Πs
r : ω(t)t≥s 7→ ω(t+ r)t≥s. (5.7)

For any r > 0, i ∈ {1, 2}, we have

(P i ◦ (Πs
r)
−1) ◦ (πst )

−1 = P i ◦ (πst+r)
−1 = µ

s,δy
t+r = wy(t+ r − s, x)dx, ∀t ≥ s. (5.8)

It is straightforward to check that P i ◦ (Πs
r)
−1∈P(C([s,∞),Rd)), i∈{1, 2}, is a solution law to

(3.1) with initial condition (s, wy(r, x)dx). As wy(r, x)dx ∈ P0, (5.8) and (III) yield

P 1 ◦ (Πs
r)
−1 = P 2 ◦ (Πs

r)
−1.

Now let s ≤ u1 < · · · < un, n ∈ N. First assume u1 > s. Then for i ∈ {1, 2}

P i ◦ (πsu1
, ..., πsun)−1 = (P i ◦ (Πs

u1−s)
−1) ◦ (πss , ..., π

s
un+s−u1

)−1

and by the previous part of the proof the right hand side coincides for i = 1 and i = 2, since
u1 − s > 0. Now assume s = u1 < · · · < un. Then, since P i ◦ (πss)

−1 = δy, we find

P i ◦ (πsu1
, ..., πsun)−1 = δy ⊗ (P i ◦ (πsu2

, ..., πsun)−1)

(where µ⊗ν denotes the product measure of the measures µ and ν). Since u2 > s, the argument
of the first case again yields that the right hand side coincides for i = 1 and i = 2. Hence we
have proven

P 1 ◦ (πsu1
, ..., πsun)−1 = P 2 ◦ (πsu1

, ..., πsun)−1

for all s ≤ u1 < · · · < un, n ∈ N, i.e. P 1 = P 2, which proves the claim and, thereby, the
assertion.

(ii) First note

Ps,ζ ◦ (πst )
−1 = µs,ζt = µ0,ζ

t−s = (P0,ζ ◦ (Π̂s)
−1) ◦ (πst )

−1, ∀t ≥ s,
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with Π̂s as in (5.5). Both Ps,ζ and P0,ζ ◦ (Π̂s)
−1 are solution laws to (3.1) on [s,∞) with initial

condition (s, ζ), hence, by (i),they coincide.

For the final statement, note that for ζ = wy(δ, x)dx the measures P0,ζ and P0,y ◦ (Π0
δ)
−1 have

identical one-dimensional time marginals wy(δ+t, x)dx, t ≥ 0, and both are solution laws to (3.1)
with initial condition (0, wy(δ, x)dx). Thus the assertion follows from the uniqueness assertion
in (i). �

Remark 5.8. Theorem 5.6 (ii) implies that the nonlinear Markov process (Ps,ζ)(s,ζ)∈R+×P0
from (i)

is uniquely determined by
(Py)y∈Rd , Py := P0,δy .

Therefore, we also refer to (Py)y∈Rd as the unique nonlinear Markov process determined by (3.1) and
the one-dimensional time marginals wy(t), y ∈ Rd, t ≥ 0. Note that Py is the path law of the solution
Xy from Corollary 4.5.

Finally, we arrive at the following definition.

Definition 5.9. Let d ≥ 2, p > d
d−1 , q > 0 such that q(p− 1) > 1. If p < 2, assume additionally that

q(p− 1) > 2−p+d
d (> 1). We call the nonlinear Markov process (Py)y∈Rd from the previous remark the

Leibenson process.

In particular, the Barenblatt solutions to (1.1) have a probabilistic representation as the one-
dimensional time marginal densities of the Leibenson process, which they uniquely determine as a
nonlinear Markov process. The construction of this process and the derivation of the corresponding
stochastic equation, i.e. (3.1), is completely analogous to the linear special case (p, q) = (2, 1) of the
heat equation and Brownian motion, compare Section 5.1.

The special case d ≥ 2, p > 2, q = 1 was studied in [52]; therein the corresponding nonlinear
Markov process was called p-Brownian motion.

6 The Leibenson process is a functional of Brownian motion

In Section 5 we constructed the Leibenson process, which consists of path laws of probabilistically
weak solutions (X,W ) to the McKean–Vlasov SDE (3.1) with u(t) = wy(t + δ), t > 0, δ ≥ 0. In this
section, we prove that for δ > 0 these solutions are in fact probabilistically strong solutions, that is, X
is a measurable adapted functional of the driving Brownian motion W and its initial condition X(0).
For simplicity, we only consider the case y = 0. The general case y ∈ Rd can be proved analogously.

First, we reduce the question of whether there exists a probabilistically strong solution to (1.2) to
a problem for an ordinary SDE. For δ > 0, we set for (t, x) ∈ R+ × Rd

wδ(t, x) := w0(t+ δ, x), %δ(t, x) := |∇wδ(t, x)|p−2wδ(t, x)(p−1)(q−1), Rδ(t) := R(t+ δ),

where again w0 denotes the Barenblatt solution from (4.1), and R is defined as in (4.2). As computed
in the proof of Theorem 4.4, we have

%δ(t, x) = C%(t+ δ)f+(t+ δ, x)|x|
p−2
p−1 , (t, x) ∈ R+ × Rd, (6.1)

where we set

C%(t+ δ) :=

(
γκp

p− 1

)p−2
(t+ δ)−

d(p−2)
β − p(p−2)

β(p−1)
− d(p−1)(q−1)

β , (t, x) ∈ R+ × Rd. (6.2)

Consider the ordinary SDE{
dX(t) = qp−1∇%δ(t,X(t))dt+

√
2qp−1%δ(t,X(t))dW (t),

LX(t)(dx) = wδ(t, x)dx.
(6.3)
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Note that (6.3) is equivalent to (3.1) and LX(t)(dx) = wδ(t, x)dx; it is obtained by fixing u = wδ in
the coefficients in (3.1).

Now we define when a probabilistically weak solution to (3.1) (this includes (6.3)) is said to be
strong. We introduce the following notation. Let t ∈ [0,∞). We set Bt(C([0,∞);Rd)) := σ(πs : s ∈
[0, t]) and, correspondingly, Bt(C([0,∞);Rd)0) := σ(πs : s ∈ [0, t])∩C([0,∞);Rd)0. Furthermore, PW

denotes the Wiener measure on (C([0,∞);Rd)0,B(C([0,∞);Rd)0).

Definition 6.1. A probabilistically weak solution (X,W, (Ω,F , (Ft)t≥0,P)) to (1.2) with initial condition
ν ∈ P(Rd) is called a probabilistically strong solution, if there exists

Fν : Rd × C([0,∞);Rd)0 → C([0,∞);Rd),

which is B(Rd)⊗ B(C([0,∞);Rd)0)
ν⊗PW

/B(C([0,∞);Rd))-measurable such that for ν-a.e. x ∈ Rd,

Fν(x, ·) is Bt(C([0,∞);Rd)0)
PW

/Bt(C([0,∞);Rd))-measurable for every t ∈ [0,∞), and

X = Fν(X(0),W ) P-a.s.

Here, B(Rd)⊗ B(C([0,∞);Rd)0)
ν⊗PW

denotes the completion of B(Rd) ⊗ B(C([0,∞);Rd)0) with

respect to ν⊗PW , and Bt(C([0,∞);Rd)0)
PW

denotes the completion of Bt(C([0,∞);Rd)0) with respect
to PW in B(C([0,∞);Rd)0).

Before we state the main result of this section, we recall the definition of pathwise uniqueness for
(6.3).

Definition 6.2. Pathwise uniqueness holds for (6.3) if for every pair of probabilistically weak solutions
(X,W ), (Y,W ) to (6.3) defined on the same stochastic basis (Ω,F , (Ft),P) with respect to the same
(Ft)-Brownian motion W and with X(0) = Y (0) P-a.s., we have supt |X(t)− Y (t)| = 0 P-a.s.

In Theorem 4.4, we proved there exists a probabilistically weak solution (X,W ) to (6.3) such that
LX(t) = wδ(t, x)dx, t ∈ R+. The following main result of this section shows that under quite general
conditions these solutions are actually strong.

Theorem 6.3 (The Leibenson process is a functional of Brownian motion). Let δ > 0. Let d ≥ 2,

p > 1, q > 0 such that p > d
d−1 and q > |p−2|+d

d(p−1)

(
> 1

p−1

)
. Then, the probabilistically weak solution

to (6.3) constructed in Theorem 4.4 is a probabilistically strong solution. Furthermore, for all T > 0,
pathwise uniqueness holds among weak solutions (X,W ) to (6.3) on [0, T ].

Remark 6.4. Note that Theorem 6.3 includes the case of p-Browninan motion, i.e., p > 2, q = 1.

As already mentioned above, the case of arbitrary initial points y ∈ Rd can be obtained analogously:

Corollary 6.5. Let y ∈ Rd and δ > 0. Let d ≥ 2, p > 1, q > 0 such that p > d
d−1 and q > |p−2|+d

d(p−1) .

Then, the probabilistically weak solution to (6.3) constructed in Corollary 4.5 is a probabilistically
strong solution. Furthermore, for all T > 0, pathwise uniqueness holds among weak solutions (X,W )
to (6.3) on [0, T ].

6.1 The restricted Yamada–Watanabe theorem

Our result is based on the restricted Yamada–Watanabe theorem, which we will recall here in a form
tailored to the ordinary SDE (6.3). For the general formulation for stochastic partial differential
equations in the variational framework, we refer to [33, Theorem 1.3.1].

Theorem 6.6. Assume
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(i) There exists a probabilistically weak solution (X,W ) to (6.3);

(ii) Pathwise uniqueness holds for (6.3).

Then the weak solution (X,W ) to (6.3) from (i) is a probabilistically strong solution.

Proof. The assertion follows from [33, Theorem 1.3.1] by setting (using the notation of [33])

Pwδ(0,x)dx := {Q ∈ P(C([0,∞);Rd)) : Q ◦ π−1t = wδ(t, x)dx ∀t ∈ R+}.

By Theorem 4.4, Assumption (i) of Theorem 6.6 is satisfied. Therefore, the rest of the proof of
Theorem 6.3 boils down to a pathwise uniqueness result for (6.3). The proof of Theorem 6.3 is carried
out in Section 6.4. In the following two subsections we present some technical preparations.

6.2 About the Schwartz distributional derivative of ∇%δ(t, ·)
Here we discuss regularity and integrability aspects of the drift coefficient of (6.3), which will be
essential for the proof of Theorem 6.3.

Lemma 6.7. Let d ≥ 2, p > 1, q > 0 such that q(p− 1) > 1 and p > d
d−1 . Let δ > 0 and t ≥ 0. Then,

∇%δ(t, ·) ∈ BV (Rd;Rd)

with Schwartz distributional derivatives given by the finite signed Borel measures (on Rd)

∂i∂j%δ(t, A) =

ˆ
A

gi,jδ (t, z)dz + C(t+ δ)−
d(p−2)
β − pβ−

d(p−1)(q−1)
β

ˆ
A∩∂BRδ(t)(0)

zizjS(dz) ∀A ∈ B(Rd),

(6.4)

where 1 ≤ i, j ≤ d, C > 0 is a constant not depending on t, and gi,jδ (t, ·) ∈ L1(Rd) denotes the classical
second order derivative of %δ(t, ·) with respect to the coordinates xi and xj on Rd\(∂BRδ(t)(0) ∪ {0}).

Proof. In the proof of Theorem 4.4 we already showed that %δ(t, ·) ∈ L1(Rd) and that %δ(t, ·) is weakly
differentiable on Rd with spatial weak derivative (and also classical derivative in x ∈ Rd\(∂BRδ(t)(0)∪
{0}))

∇%δ(t, x) = C%(t+ δ)

(
p− 2

p− 1
f+(t+ δ, x)|x|−

p
p−1 − κp

p− 1
(t+ δ)−

p
β(p−1)1BRδ(t)(0)

(x)

)
x, (6.5)

where C% is as in (6.2). Note that ∇%δ(t, ·) has compact support, so that ∇%δ(t, ·) ∈ L1(Rd).
Furthermore, it is clear that %δ(t, ·) is twice continuously differentiable on Rd\(∂BRδ(t)(0)∪{0}). Recall

that we denote the ordinary second-order derivative of %δ(t, ·) in directions xi and xj by gi,jδ (t, ·). A
direct computation yields for all x ∈ Rd\(∂BRδ(t)(0) ∪ {0}),

gi,jδ (t, x) = C%(t+ δ)1BRδ(t)(0)(x)

[
p− 2

p− 1

(
− κp

p− 1
(t+ δ)−

p
β(p−1) |x|

2−p
p−1xi

)
|x|−

p
p−1xj

+
p− 2

p− 1
f(t+ δ, x)

(
− p

p− 1
|x|

2−3p
p−1 xixj + |x|−

p
p−1 δij

)
− κp

p− 1
(t+ δ)−

p
β(p−1) δij

]
= C%(t+ δ)1BRδ(t)(0)(x)

[
− κp(p− 2)

(p− 1)2
(t+ δ)−

p
β(p−1) |x|−2xixj

+
p− 2

p− 1
f(t+ δ, x)

(
− p

p− 1
|x|

2−3p
p−1 xixj + |x|−

p
p−1 δij

)
− κp

p− 1
(t+ δ)−

p
β(p−1) δij

]
,
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where δij denotes the usual Kronecker delta. Note that gi,jδ (t, ·) ∈ L1(Rd), since p > d
d−1 . Now, we are

prepared to prove (6.4). Let ϕ ∈ C∞c (Rd). By Lebesgue’s dominated convergence theorem, we have

ˆ
BRδ(t)(0)

∂i%δ(t, x)∂jϕ(x)dx = lim
ε↓0

ˆ
BRδ(t)−ε(0)\Bε(0)

∂i%δ(t, x)∂jϕ(x)dx.

Let 0 < ε < Rδ(t)/2. Then integration by parts yields

ˆ
BRδ(t)−ε(0)\Bε(0)

∂i%δ(t, x)∂jϕ(x)dx = −
ˆ
BRδ(t)−ε(0)\Bε(0)

gi,jδ (t, x)ϕ(x)dx (6.6)

+

ˆ
∂BRδ(t)−ε(0)

∂i%δ(t, x)ϕ(x)
xj

Rδ(t)− ε
dS(x)−

ˆ
∂Bε(0)

∂i%δ(t, x)ϕ(x)
xj
ε

dS(x).

First, the third summand on the right-hand side in (6.6) vanishes as ε→ 0, since∣∣∣∣∣
ˆ
∂Bε(0)

∂i%δ(t, x)ϕ(x)
xj
ε

dS(x)

∣∣∣∣∣ .δ (ε− 1
p−1 + ε

)
εd−1 → 0, as ε→ 0,

where we used p > d
d−1 . Secondly, due to (6.5), the second summand on the right-hand side in (6.6)

can be written as
ˆ
∂BRδ(t)−ε(0)

∂i%δ(t, x)xj
Rδ(t)− ε

ϕ(x)dS(x) =
C%(t+ δ)(p− 2)

(Rδ(t)− ε)(p− 1)

ˆ
∂BRδ(t)−ε(0)

f+(t+ δ, x)|x|−
p
p−1xixjϕ(x)dS(x)

− C%(t+ δ)(t+ δ)−
p

β(p−1)κp

(p− 1)(Rδ(t)− ε)

ˆ
∂BRδ(t)−ε(0)

xixjϕ(x)dS(x).

Using the transformation x 7→ (Rδ(t)− ε)x, it is easy to see that the first summand on the right-hand
side of the last equality vanishes as ε → 0. A similar argument regarding the last integral on the
right-hand side yields

ˆ
∂BRδ(t)−ε(0)

xixjϕ(x)dS(x)→
ˆ
∂BRδ(t)(0)

xixjϕ(x)dS(x), as ε→ 0.

Hence, letting ε → 0 in (6.6), we conclude that the spatial Schwartz distributional derivatives of
the components of ∇%δ can be written as

D′〈∂j∂i%δ(t, ·), ϕ〉D =

ˆ
Rd
gi,jδ (t, x)ϕ(x)dx+

C%(t+ δ)(t+ δ)−
p

β(p−1)κp

(p− 1)(Rδ(t)− ε)

ˆ
∂BRδ(t)(0)

xixjϕ(x)dS(x),

for ϕ ∈ C∞c (Rd) and 1 ≤ i, j ≤ d, where D′〈·, ·〉D, denotes the usual action of Schwartz distributions
on Rd, denoted by D′, on D ≡ C∞c (Rd). This finishes the proof.

We have the following lemma.

Lemma 6.8. Let d ≥ 2 with δ > 0. Let p > 1, q > 0 such that q(p− 1) > 1 and p > d
d−1 . Then

ˆ T

0

ˆ
M |Dx∇%δ(t, ·)|(x)wδ(t, x)dxdt <∞ ∀T ∈ (0,∞), (6.7)

where Dx∇%δ(t, ·) denotes the matrix consisting of all second order Schwartz distributional derivatives
of %δ(t, ·) in form of finite signed Borel measures, according to Lemma 6.7.
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Proof. Let T > 0. According to and using the notation of Lemma 6.7, we may estimate as follows.
ˆ T

0

ˆ
M |Dx∇%δ(t, ·)|(x)wδ(t, x)dxdt .δ

ˆ T

0

ˆ
M

(
max

1≤i,j≤d
|gi,jδ (t, ·)|

)
(x)wδ(t, x)dxdt (6.8)

+

ˆ T

0

ˆ
M |S(· ∩ ∂BRδ(t)(0))|(x)wδ(t, x)dxdt. (6.9)

According to Lemma 6.7, we have

max
1≤i,j≤d

|gi,jδ (t, x)| .δ 1 + |x|
−p
p−1 .

Note that | · |−
p
p−1 ∈ A1, since p > d

d−1 . Hence, we obtain

ˆ T

0

ˆ
M

(
max

1≤i,j≤d
|gi,jδ (t, ·)|

)
(x)wδ(t, x)dxdt .δ 1 +

ˆ T

0

ˆ
M(| · |−

p
p−1 )(x)wδ(t, x)dxdt

. 1 +

ˆ T

0

ˆ
|x|−

p
p−1wδ(t, x)dxdt <∞.

Furthermore, by Cauchy’s surface area formula, we have

S(Br(x) ∩ ∂BRδ(t)(0)) ≤ S(∂Br(0)) . rd−1. (6.10)

Also, for each x ∈ Rd such that |x| 6= Rδ(t) and all 0 < r ≤ ||x| −Rδ(t)| we have

S(Br(x) ∩ ∂BRδ(t)(0)) = 0.

Hence, for all x ∈ Rd such that |x| 6= Rδ(t), we obtain

M |S(· ∩ ∂BRδ(t)(0))|(x) .
1

||x| −Rδ(t)|
. (6.11)

Claim: For all ρ ≥ 0 there exists Cρ ≥ 1 such that for all r ∈ [0, 1]

1− rρ ≤ Cρ(1− r). (6.12)

Proof of Claim: By l’Hospital’s rule, the function

[0, 1) 3 r 7→ 1− rρ

1− r
can be extended to a continuous function on the interval [0, 1], which clearly has a maximum Cρ ≥ 1
on [0, 1].

Using (6.11), the transformation x 7→ Rδ(t)x, integration in polar coordinates, and (6.12), we
obtainˆ T

0

ˆ
M |S(· ∩BRδ(t)(0))|(x)wδ(t, x)dxdt .δ

ˆ T

0

ˆ
(||x| −Rδ(t)|)−1f+(t+ δ, x)γdxdt

.δ

ˆ 1

0

rd−1

1− r
(1− r

p
p−1 )γdr .

ˆ 1

0

(1− r)γ−1dr <∞.

Hence, since γ > 0, (6.7) follows.

Remark 6.9. At first sight, the estimate (6.11) seems quite rough. But, in fact, elementary geometrical
considerations show that, for d = 3 and fixed t ≥ 0,

M |Dx∇%δ(t, ·)|(x) ∼=
1

|x|||x| −Rδ(t)|
,

for all x in a neighborhood of ∂BRδ(t)(0).
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6.3 Weak derivatives (of powers) of
√
%
δ

Here we discuss regularity and integrability aspects of the diffusion coefficient of (6.3), which will be
essential in the proof of Theorem 6.3.

Lemma 6.10. Let d ≥ 2, p > 1, q > 0 with q(p− 1) > 1, and

(p− 2)(1 + γ)

2(p− 1)
> 1− d. (6.13)

Then for each t > 0, %
1+γ
2

δ (t, ·) is weakly differentiable.

Remark 6.11. Consider

(i)

p >
2d

2d− 1
and q >

2d(p− 1)− p− (p− 2)(p− 1)

(p− 1)(2d(p− 1)− p)
; (6.14)

(ii)

(2 ≥)
2d

2d− 1
> p > 1 and q <

2d(p− 1)− p− (p− 2)(p− 1)

(p− 1)(2d(p− 1)− p)
. (6.15)

In fact, (6.13) holds if and only if (6.14) or (6.15) is fulfilled.

Proof. By (6.1), clearly %
1+γ
2

δ (t, ·) ∈ L1(Rd). Note that %
1+γ
2

δ (t, ·) is (infinitely many times) continuously
differentiable on Rd\(∂BRδ(t)(0) ∪ {0}). Let ϕ ∈ C∞c (Rd) and 0 < ε < Rδ(t)/2. By Lebesgue’s
dominated convergence, we obtain

ˆ
%

1+γ
2

δ (t, x)∂iϕ(x)dx = lim
ε→0

ˆ
BRδ(t)−ε\Bε(0)

%
1+γ
2

δ (t, x)∂iϕ(x)dx.

Integrating by parts, we obtain for 1 ≤ i ≤ d
ˆ
BRδ(t)−ε\Bε(0)

%
1+γ
2

δ (t, x)∂iϕ(x)dx = −
ˆ
BRδ(t)−ε\Bε(0)

∂i%
1+γ
2

δ (t, x)ϕ(x)dx

+

ˆ
∂BRδ(t)−ε

%
1+γ
2

δ (t, x)ϕ(x)
xi

Rδ(t)− ε
S(dx)

−
ˆ
∂Bε(0)

%
1+γ
2

δ (t, x)ϕ(x)
xi

Rδ(t)− ε
S(dx),

where ∂i%
1+γ
2

δ (t, ·) denotes the dx-a.e. existing pointwise partial derivative of %
1+γ
2

δ (t, ·) in direction xi.
By Lebesgue’s dominated convergence theorem
ˆ
∂BRδ(t)−ε

%
1+γ
2

δ (t, x)ϕ(x)
xi

Rδ(t)− ε
S(dx)

=

ˆ
∂B1(0)

%
1+γ
2

δ (t, (Rδ(t)− ε)x)ϕ((Rδ(t)− ε)x)xi(Rδ(t)− ε)d−1S(dx)
ε→0−−−→ 0. (6.16)

Furthermore, by (6.13),
ˆ
∂Bε(0)

%
1+γ
2

δ (t, x)ϕ(x)
xi

Rδ(t)− ε
S(dx) .δ ε

(p−2)(1+γ)
2(p−1)

+d−1 ε→0−−−→ 0. (6.17)
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Using chain rule as well as (6.1) and (6.5), an easy calculation yields that the pointwise partial

derivatives of %
1+γ
2

δ (t, ·) on Rd\(∂BRδ(t)(0) ∪ {0}) satisfy the bound

|∂i%
1+γ
2

δ (t, x)| .δ f+(t+ δ, x)
γ−1
2 |x|

(p−2)(1+γ)+2
2(p−1) + f+(t+ δ, x)

γ+1
2 |x|

(p−2)(1+γ)
2(p−1)

−1, (6.18)

where i ∈ {1, ..., d}. Under condition (6.13), it is clear that ∂i%
1+γ
2

δ (t, ·) ∈ L1(Rd). Hence, Lebesgue’s
dominated convergence theorem yieldsˆ

BRδ(t)−ε\Bε(0)
∂i%

1+γ
2

δ (t, x)ϕ(x)dx
ε→0−−−→

ˆ
∂i%

1+γ
2

δ (t, x)ϕ(x)dx. (6.19)

This completes the proof.

We have the following lemma.

Lemma 6.12. Let d ≥ 2 δ > 0, and p > 1, q > 0 be such that p > d
d−1 and q > |p−2|+d

d(p−1) . Then

ˆ T

0

ˆ
Rd

(
M |∇%

1+γ
2

δ (t, ·)|(x)
)2
|x|−

p−2
q(p−1)−1 dxdt <∞ ∀T > 0. (6.20)

Proof. Let T > 0. Note

2d(p− 1)− p− (p− 2)(p− 1)

(p− 1)(2d(p− 1)− p)
<
|p− 2|+ d

d(p− 1)
. (6.21)

Hence, by Lemma 6.10 and Remark 6.11, we have ∇%
1+γ
2

δ (t, ·) ∈ L1(Rd). Since q > |p−2|+d
d(p−1) , we have

| · |−
p−2

q(p−1)−1 ∈ A2

(for the definition of the Muckenhoupt class A2, we refer to Appendix D.2). Hence, in order to show
(6.20), it is sufficient to prove

ˆ T

0

ˆ
Rd

∣∣∣∇% 1+γ
2

δ (t, x)
∣∣∣2 |x|− p−2

q(p−1)−1 dxdt <∞.

By the proof of Lemma 6.10 (more precisely (6.18))∣∣∣∇% 1+γ
2

δ (t, x)
∣∣∣ .δ f+(t+ δ, x)

γ−1
2 |x|

(p−2)(1+γ)+2
2(p−1) + f+(t+ δ, x)

γ+1
2 |x|

(p−2)(1+γ)
2(p−1)

−1, (6.22)

whence ˆ T

0

ˆ
Rd

∣∣∣∇% 1+γ
2

δ

∣∣∣2 |x|− p−2
q(p−1)−1 dxdt

.
ˆ T

0

ˆ
Rd
f+(t+ δ, x)γ−1|x|

p
p−1 + f+(t+ δ, x)1+γ |x|−

p
p−1 dxdt <∞,

where we used p > d
d−1 and γ > 0. This completes the proof.

6.4 Proof of Theorem 6.3

We show that Theorem 6.3 follows from Theorem 6.6. Therefore, we need to show that both conditions
of the latter theorem are fulfilled.

In fact, assumption (ii) of Theorem 6.6 follows from Theorem 4.4, and (ii) follows from Theorem
6.13 below.

The proof of the following theorem is inspired by the technique in [54].
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Theorem 6.13. Let δ > 0 and T > 0. Let d ≥ 2, p > 1, q > 0 such that p > d
d−1 and q >

|p−2|+d
d(p−1) . Let (X,W ) and (Y,W ) be two probabilistically weak solutions to (6.3) on [0, T ] on a common

stochastic basis (Ω,F , (Ft)t∈[0,T ],P) with respect to the same (Ft)-Brownian motion (W (t))t∈[0,T ] such
that X(0) = Y (0) P-a.s. Then X = Y P-a.s.

Proof. Due to Proposition E.2, we may assume without loss of generality

∇%δ(t, 0) = 0, ∀t ∈ [0, T ]. (6.23)

From Lemma 6.7 and the proof of Theorem 4.4, it follows that
√
%δ, |∇%δ| ∈ L1([0, T ]×Rd). For n ∈ N

we set

τn := inf{t ∈ [0,∞) : |X(t)| ∨ |Y (t)| ≥ n}.

Note that τn is an (Ft)-stopping time. For ε > 0, we set hε(x) := ln(1 + |x|2/ε2), x ∈ Rd. Clearly, for
all x ∈ Rd

|∇hε(x)| . 1

|x|+ ε
, |D2hε(x)| . 1

|x|2 + ε2
.

Let n ∈ N, ε > 0. Using Itô’s formula, we obtain for each t ∈ [0, T ] (cf. proof of [54, Theorem 1.1])

E
[
ln

(
1 +
|X(t ∧ τn)− Y (t ∧ τn)|2

ε2

)]
. E

[ˆ t∧τn

0

2〈∇%δ(s,X(s))−∇%δ(s, Y (s)), X(s)− Y (s)〉Rd + |√%δ(s,X(s))−√%δ(s, Y (s))|2

|X(s)− Y (s)|2 + ε2
ds

]
. E

[ˆ t∧τn

0

|∇%δ(s,X(s))−∇%δ(s, Y (s))|
|X(s)− Y (s)|+ ε

ds

]
+ E

[ˆ t∧τn

0

|√%δ(s,X(s))−√%δ(s, Y (s))|2

|X(s)− Y (s)|2 + ε2
ds

]
=: (?1) + (?2). (6.24)

Claim: For all x, z ∈ Rd

|∇%δ(t, x)−∇%δ(t, z)| . (M |Dx∇%δ(t, ·)|(x) + M |Dx∇%δ(t, ·)|(z)) |x− z|. (6.25)

Proof of Claim: By (6.23) and the continuity of ∇%δ(t, ·) on Rd\(∂BR(t)(0) ∪ {0}), it is easy to see
that for any standard radial Dirac sequence (ϕε)ε>0,

(∇%δ(t, ·) ∗ ϕε)(x)→ ∇%δ(t, x) ∀x ∈ Rd\∂BR(t)(0), (6.26)

where the convolution is meant componentwise.
Furthermore, ∂BRδ(t)(0) consists of all approximate jump points of %δ(t, ·) in the sense of [2,

Definition 3.67]. Hence, by Lemma D.2 and Remark D.3, the assertion follows. Indeed: Fix an arbitrary

t ≥ 0. For all x0 ∈ BRδ(t)(0), we set (in the notation of [2]), ν := x0

|x0| , a := − κp
p−1 (t+δ)−

p
β(p−1)x0, b := 0.

Furthermore, let B−r (x, ν) := {y ∈ Br(x) : 〈y−x, ν〉 < 0} and B+
r (x, ν) := {y ∈ Br(x) : 〈y−x, ν〉 > 0}.

Then a simple transformation of the Lebesgue integral shows (here |A| denotes the Lebesgue measure
of a set A ∈ B(Rd))

1

|B−r (x0, ν)|

ˆ
B−r (x0,ν)

|∇%δ(t, y)− a|dy .
ˆ
B−1 (0,ν)

|∇%δ(t, x0 + ry)− a|dy → 0, as r ↓ 0,

where we used the fact that ∇%δ(t, y)→ a, whenever y → x0 with y ∈ BRδ(t)(0), and that ∇%δ(t, ·) is

bounded on Rd\Bε(0), for all ε > 0. Furthermore, since supp(|∇%δ(t, ·)|) = BRδ(t)(0), we have

1

|B+
r (x0, ν)|

ˆ
B+
r (x0,ν)

|∇%δ(t, y)− b|dy = 0 ∀r > 0.
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This completes the proof of the claim.

Proof of Theorem 6.13 continued. Using (6.25), we may estimate (?1) by

(?1) . E
[ˆ t∧τn

0

M |Dx∇%δ(s, ·)|(X(s)) + M |Dx∇%δ(s, ·)|(Y (s))ds

]
≤ 2

ˆ T

0

ˆ
Bn(0)

M |Dx∇%δ(s, ·)|(x)wδ(s, x)dxds. (6.27)

By Lemma 6.8, the right-hand side of (6.27) is finite.
Before we estimate (?2), we remark that due to the mean value theorem, the following inequalities

are true (under the convention 0 · ∞ = 0) for all x, y ∈ Rd if p > 2, and for all x, y ∈ Rd\{0} if p < 2:

|√%δ(t, x)−√%δ(t, y)|2 =

∣∣∣∣∣(% 1+γ
2

δ (t, x)
) 1

1+γ

−
(
%

1+γ
2

δ (t, y)
) 1

1+γ

∣∣∣∣∣
2

.

(ˆ 1

0

[
θmax

(
%

1+γ
2

δ (t, x), %
1+γ
2

δ (t, y)
)]− γ

1+γ

dθ

)2

·
∣∣∣% 1+γ

2

δ (t, x)− %
1+γ
2

δ (t, y)
∣∣∣2

.δ
(

max
(
wδ(t, x)|x|

(p−2)
q(p−1)−1 , wδ(t, y)|y|

(p−2)
q(p−1)−1

))−1
·
∣∣∣% 1+γ

2

δ (t, x)− %
1+γ
2

δ (t, y)
∣∣∣2 . (6.28)

We estimate (?2) as follows.

E

[ˆ T

0

|√%δ(t,X(t))−√%δ(t, Y (t))|2

|X(t))− Y (t))|2 + ε2
dt

]
(6.29)

.δ E


ˆ

T

0

∣∣∣% 1+γ
2

δ (t,X(t))− %
1+γ
2

δ (t, Y (t))
∣∣∣2

(|X(t))− Y (t))|2 + ε2) max
(
wδ(t,X(t))|X(t)|

(p−2)
q(p−1)−1 , wδ(t, Y (t))|Y (t)|

(p−2)
q(p−1)−1

)dt

 .
Recall that, by Lemma 6.10, %

1+γ
2

δ (t, ·) is weakly differentiable. Clearly, %
1+γ
2

δ (t, ·) ∈ C(Rd) if p > 2,

and %
1+γ
2

δ (t, ·) ∈ C(Rd\{0}) if p < 2. Here, we emphasize that in the latter case, since X,Y satisfy the
integrability condition (3.2), respectively, {min(|X|, |Y |) = 0} is a dt ⊗ P-zero set. Hence, by (6.25)

where we formally replace ∇%δ(t, ·) by %
1+γ
2

δ (t, ·) (which, in the case p > 2, then holds for all x, z ∈ Rd,
and, if p < 2, for all x, z ∈ Rd\{0} due to the function’s respective continuity), we obtain

E


ˆ

T

0

∣∣∣% 1+γ
2

δ (t,X(t))− %
1+γ
2

δ (t, Y (t))
∣∣∣2

(|X(t))− Y (t))|2 + ε2) max
(
wδ(t,X(t))|X(t)|

(p−2)
q(p−1)−1 , wδ(t, Y (t))|Y (t)|

(p−2)
q(p−1)−1

)dt


. E


ˆ

T

0

(
M |∇%

1+γ
2

δ (t, ·)|(X(t))
)2

wδ(t,X(t))|X(t)|
(p−2)

q(p−1)−1

dt

+ E


ˆ

T

0

(
M |∇%

1+γ
2

δ (t, ·)|(Y (t))
)2

wδ(t, Y (t))|Y (t)|
(p−2)

q(p−1)−1

dt


. 2

ˆ T

0

ˆ
Rd

(
M |∇%

1+γ
2

δ (t, ·)|(x)
)2
|x|−

p−2
q(p−1)−1 dxdt. (6.30)

Note that, according to Lemma 6.12, the right-hand side of (6.30) is finite. Hence, by the monotone
convergence theorem, we obtain

E
[
lim
ε↓0

ln

(
1 +
|X(t ∧ τn)− Y (t ∧ τn)|2

ε2

)]
= lim

ε↓0
E
[
ln

(
1 +
|X(t ∧ τn)− Y (t ∧ τn)|2

ε2

)]
<∞.
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Since X and Y are P-a.e. continuous, we conclude P-a.s.

X(t ∧ τn) = Y (t ∧ τn) ∀t ∈ [0, T ]. (6.31)

Again, by the P-a.s. continuity of X,Y , τn → ∞, as n → ∞, P-a.s. Therefore, letting n → ∞ in
(6.31), we obtain P-a.s.

X(t) = Y (t) ∀t ∈ [0, T ].

This completes the proof.

7 A restricted uniqueness result for the linearized Leibenson
Fokker–Planck equation

The goal of this section is to prove that, in the situation of Theorem 5.6, condition (P0-linex) from
Corollary 5.5, more precisely its equivalent condition from Lemma 5.4, is satisfied with P0 as defined
in (5.6), see Theorem 7.4. As in Section 6, we set for δ > 0

wδ(t, x) := w(t+ δ, x), %δ(t, x) := |∇wδ(t, x)|p−2wδ(t, x)(p−1)(q−1),

where again w denotes the Barenblatt solution from (4.1) with inital datum δ0. As computed in the
proof of Theorem 4.4, we have

%δ(t, x) ∼= (t+ δ)−
d
β (p−2)−

p(p−2)
β(p−1)

− dβ (q−1)(p−1)f+(t+ δ, x)|x|
p−2
p−1 .

Here we study the wδ-linearized version of (1.7), i.e. the linear FPE

∂tu = qp−1
(
∆
(
%δu
)
− div

(
∇%δu

))
, (7.1)

obtained by fixing wδ in the nonlinear variable of the coefficients in (1.7). We set QT := (0, T ) × Rd
for T > 0.

Definition 7.1. A (distributional) solution to (7.1) on (0, T ) with initial condition ν ∈ M+
b is a

function u ∈ L1(QT ) such that t 7→ u(t, x)dx is a weakly continuous curve of (signed) Borel measures
with ˆ T

0

ˆ
Rd

(%δ + |∇%δ|)|u|dxdt <∞,

such that for all ψ ∈ C∞c (Rd)
ˆ
Rd
ψ u(t) dx−

ˆ
Rd
ψ dν =

ˆ t

0

ˆ
Rd

(%δ∆ψ +∇%δ · ∇ψ)udxdt, ∀0 < t < T. (7.2)

u is called probability solution, if u ≥ 0 and ν, u(t, x)dx ∈ P for all t ∈ (0, T ).

This definition is consistent with Definition C.1 for the linear Fokker–Planck equation (7.1) (except
for the additional assumption u ∈ L1(QT ), and on (0, T ) instead of R+). Clearly, u(t, x) = wδ(t, x) is
a probability solution with initial datum w(δ, x)dx to (7.1).

Remark 7.2. An equivalent condition to (7.2) is

ˆ
(0,T )×Rd

(
∂tϕ+ qp−1div

(
%δ∇ϕ

))
udxdt+

ˆ
Rd
ϕ(0) dν = 0 (7.3)

for all ϕ ∈ C∞c ([0, T )× Rd).
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We collect basic properties of wδ and %δ used in the sequel, of which some were already stated in
Lemma 4.3.

Lemma 7.3. Let δ > 0. Then wδ and %δ are nonnegative functions with the following properties.

(i) wδ ∈
⋂
R>0 Cc([0, R]× Rd) ∩ L∞([0,∞)× Rd).

(ii) For p ≥ 2, we have %δ ∈
⋂
R>0 Cc([0, R]× Rd) and {x ∈ Rd : %δ(t, x) > 0} = {x ∈ Rd : 0 ≤ |x| <(

C
κ

) p−1
p (t+ δ)

1
β }, for all t ≥ 0, where β = p+ d(q(p− 1)− 1) as above.

(iii) ∇%δ ∈ L∞loc([0,∞), Lr(Rd;Rd)) for r ∈ [1, d(p− 1)) (this interval is nonempty if p > d+1
d ).

Proof. The properties of wδ follow from Lemma 4.3. Nonnegativity and regularity of %δ is obvious
from its definition and it is clear that the support of %δ(t) equals the support of wδ(t), which is stated
in Lemma 4.3. Regarding (iii), by taking into account (4.7) and considering d-dimensional spherical

coordinates, it suffices to note that
´ 1
0
r−

r
p−1+d−1dr < ∞ holds. Indeed, − r

p−1 + d > 0 ⇐⇒ r <

d(p− 1).

Consider the class

Aδ,T :=
{
u ∈ L1∩L∞(QT ) : t 7→ u(t, x)dx ∈ C([0, T ],P), ∃C ≥ 1 : u(t) ≤ Cwδ(t) dx-a.s., ∀t ∈ [0, T ]

}
,

where C([0, T ],P) is the set of weakly continuous maps t 7→ µt ∈ P. Clearly wδ ∈ Aδ,T . Comparing
with Theorem 5.2 (more precisely, with Corollary 5.5 and Lemma 5.4) and the situation of Theorem
5.6, the following result is the remaining piece needed to close the proof of Theorem 5.6. For simplicity,
we only formulate the result for y = 0 and s = 0. The proof for the general case is identical (note that
we need this result indeed for all s ≥ 0 and y ∈ Rd).

Theorem 7.4. Let T ∈ (0,∞), δ > 0, d ≥ 2, q > 0 and q(p− 1) > 1. Assume additionally either

(i) p > 2 and q(p− 1) < 1 + d(p− 1)2

or

(ii) p > d
d−1 and q > |p−2|+d

d(p−1) .

Then wδ is the unique distributional solution to (7.1) on (0, T ) in the sense of Definition 7.1 with
initial condition wδ(0, x)dx in Aδ,T .

Notably, as shown below, the proof of the assertion under assumption (i) follows by analytic
methods, while for case (ii) the probabilistic tools developed in Section 6 are employed. Note that (i)
does not imply (ii) and (ii) does not imply (i).

Remark 7.5. In fact, a stronger uniqueness assertion holds in the situation of the previous theorem.
Precisely, for every initial condition ν ∈ P there is at most one distributional solutions to (7.1) in
Aδ,T with initial condition ν. In the proofs below we prove this stronger assertion.

Remark 7.6. If p > 2, then p > d
d−1 for d ≥ 2 and we have

|p− 2|+ d

d
< 1 + d(p− 1)2.

Hence for p > 2 the assertion of the previous theorem holds for all q > 0 such that q(p− 1) > 1.

Remark 7.7. Even though this restricted uniqueness result concerns a linear PDE, we could not obtain
its proof by a standard result from the literature. Note that the diffusion coefficient %δ is degenerate (it
is compactly supported in QT ), which renders the assertion rather delicate. For instance, we cannot

apply [16, Thm.9.8.2], since this requires %
− 1

2

δ ∇%δ to be bounded, which is not true. Our proofs below
heavily use the explicit form of wδ and %δ.
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7.1 Analytic proof of Theorem 7.4 (i)

In this case, the proof is an extension of the proof of Theorem 6.5 in [3]. For the convenience of the
reader, we give all details, also for those parts which are very similar to [3].

Let T ∈ (0,∞), δ > 0, d ≥ 2, p > 2, and q(p− 1) > 1, q < d(p− 1) + 1
p−1 . For convenience, below

we omit the absolute factor qp−1 from the RHS of (7.1). It is clear that this factor does not influence
the proof at all.

Remark 7.8. When u ∈ (L1 ∩ L∞)(Rd), then in Remark 7.2, since

div(%δ∇ϕ) = %δ∆ϕ+∇%δ · ∇ϕ

in L1(QT ), by a standard localization argument we can replace C∞c ([0, T )× Rd) by

C∞c,b([0, T )× Rd) := {ϕ ∈ C∞b ([0, T )× Rd) | ∃λ > 0 such that ϕ(t, x) = 0,∀(t, x) ∈ [T − λ, T )× Rd}.

We give more details on this claim in Appendix A. In the forthcoming proof, we abbreviate partial
time derivatives df

dt by ft. Constants depending only on absolute constants are denoted Ci, i = 1, 2, ....

Proof of Theorem 7.4 (i). Since there is no change in the argument, we prove the stronger assertion
mentioned in Remark 7.5. Let u, ū ∈ Aδ,T be distributional solutions to (7.1) with any common initial
condition ν ∈ P and set

v := u− ū.
Since u, ū ∈ Aδ,T , there are nonnegative measurable maps g, ḡ : QT → R such that u(t, x)dx =
g(t, x)wδ(t, x)dx and ū(t, x)dx = ḡ(t, x)wδ(t, x)dx for all t ∈ [0, T ], and g(t, x), ḡ(t, x) ≤ C dtdx-a.s.
for some C > 0. Hence v(t, x) = h(t, x)wδ(t, x) dtdx−a.s. for h := g − ḡ. In particular, −C ≤ h ≤ C.

v is a (signed) distributional solution to (7.1) in the sense of Definition 7.1 with initial condition
the zero measure. Let f ∈ C∞c (QT ), set and for ε ∈ (0, 1) consider the equation

(ϕε)t + div((%δ + ε)∇ϕε) = f in QT (7.4)

ϕε(T, x) = 0, x ∈ Rd.

By standard existence theory for linear parabolic equations (see, e.g., [19, Thm.10.9, p.341]) it follows
that equation (7.4) has a unique solution

ϕε ∈ C([0, T ];L2) ∩ L2(0, T ;H1),

with (ϕε)t ∈ L2(0, T ;H−1). Moreover, we have

|ϕε(t)|22 +

ˆ T

0

ˆ
Rd

(%δ(t, x) + ε)|∇ϕε(t, x)|2dtdx ≤
ˆ T

0

ˆ
Rd
|f(t, x)|2dtdx. (7.5)

In particular, (7.4) is equivalent to

(ϕε)t + (%δ + ε)∆ϕε +∇%δ · ∇ϕε = f on QT , (7.6)

ϕε(T, x) = 0, x ∈ Rd.

Claim 1. We have ϕε ∈W 1,2
2 (QT ), that is,

(ϕε)t, ∂iϕε, ∂i∂jϕε ∈ L2(QT ), i, j = 1, ..., d.

Proof of Claim 1. We set gε = ∇%δ · ∇ϕε. By (7.5) we have ϕε, |∇ϕε| ∈ L2(QT ). By Lemma 7.3 (iii),
we know that ∇%δ ∈ L∞(0, T ;Lr), r ∈ [1, d(p − 1)). Fix r ∈ (d, d(p − 1)) (this interval is nonempty,
since p > 2). Then, by Hölder’s inequality,

gε ∈ Lγ1(QT ), for γ1 :=
2r

2 + r
∈ (1, 2). (7.7)
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Taking into account that, by (7.6),

(ϕε)t + (%ε + ε)∆ϕε = f − gε ∈ Lγ1(QT ),

we get by [42, Theorem 9.1, p. 341] that ϕε ∈W 1,2
γ1 (QT ), that is,

(ϕε)t, ∂iϕε, ∂i∂jϕε ∈ Lγ1(QT ), i, j = 1, ..., d.

On the other hand, by the Sobolev–Nirenbergh–Gagliardo theorem (see, e.g., [19, p.283]) we have
(recall d ≥ 2)

|∇ϕε| ∈ Lα1(QT ) for α1 :=
γ1d

d− γ1
,

and this yields as above

gε ∈ Lγ2(QT ), for γ2 :=
α1r

α1 + r
∈ (1,∞).

Then, again by [42, Theorem 9.1, p. 341], it follows that ϕε ∈ W 1,2
γ2 (QT ) and, therefore, again by

Sobolev–Nirenbergh–Gagliardo theorem,

|∇ϕε| ∈ Lα2(QT ) for α2 :=
γ2d

d− γ2
.

Continuing, we obtain sequences γi, αi such that

gε ∈ Lγi(QT ), ϕε ∈W 1,2
γi (QT ), (7.8)

and

γ1 =
2r

2 + r
, γi+1 =

αir

αi + r
, i ∈ N,

αi =
γid

d− γi
, as long as γi < d.

This yields the recursive formula

γ1 =
2r

2 + r
∈ (1, 2), γi+1 = γi

rd

γid+ r(d− γi)
, i ∈ N, as long as γi < d.

This iterative procedure stops after the smallest i such that γi ≥ d. Since r > d, we have for all i with
γi+1 < d that

γi+1 = γi
rd

rd+ γi(d− r)
> γi. (7.9)

Suppose
γi < 2 for all i ∈ N. (7.10)

Then, by (7.9) there exists
γ := lim

i→∞
γi ≤ 2

and, passing to the limit in (7.9), we obtain

γ = γ
rd

rd+ γ(d− r)
> γ.

This contradiction implies that (7.10) is wrong, so there exists i ∈ N such that γi ≥ 2 and Claim
1 follows by [42, Theorem 9.1, p. 341], because gε ∈ L2(QT ) by (7.8), (7.7) and interpolation, since
γ1 ∈ (1, 2). �

31



Next, by the maximum principle

sup
ε∈(0,1)

|ϕε|L∞(QT ) ≤ C0|f |L∞(QT ). (7.11)

This follows in a standard way from (7.6) by multiplying the equation with (ϕε − (T − t)|f |L∞(QT ))+
and (ϕε + (T − t)|f |L∞(QT ))−, respectively, and integrating over QT .

Setting %εδ := %δ + ε and multiplying (7.6) by −ϕε, integrating over (t, T ) × Rd and using that
ϕε(T, ·) = 0, we obtain by Gronwall’s lemma (see (7.5))

|ϕε(t)|2L2(Rd) +

ˆ T

t

ˆ
Rd
%εδ|∇ϕε|2dxds ≤ C1

ˆ T

t

ˆ
Rd
|f |2dxds, ∀t ∈ (0, T ). (7.12)

Define for λ ∈ (0, 1)
ϕλε (t, x) := ηλ(t)ϕε(t, x), (t, x) ∈ QT ,

where ηλ(t) = η
(
t
λ

)
η
(
T−t
λ

)
and η ∈ C2([0,∞)) is such that

η(r) = 0 for r ∈ [0, 1], η(r) = 1 for r > 2.

Claim 2. We haveˆ T

0
H1 〈%εδ(t)∇ϕε(t),∇(ϕε)t(t)〉H−1 dt ≤ −1

2

ˆ
QT

(%δ)t|∇ϕε(t, x)|2dtdx, (7.13)

where H1 〈·, ·〉H−1 is the duality pairing on H1(Rd;Rd)×H−1(Rd;Rd).

Proof of Claim 2. By Claim 1 and its proof we have ∇(ϕε)t ∈ L2((0, T );H−1) and %εδ∇ϕε ∈
L2((0, T );H1), and so the LHS of (7.13) is well defined (indeed, in the proof of Claim 1 we showed
gε = ∇%δ · ∇ϕε ∈ L2(QT )). Now choose a sequence {ϕεν} ⊂ C1([0, T ];H1) such that ϕεν(T, ·) = 0 and,
for ν → 0,

∇ϕεν →∇ϕε strongly in L2((0, T );H1) (7.14)

∇(ϕεν)t →∇(ϕε)t strongly in L2((0, T );H−1) (7.15)

An example for such a sequence is

ϕεν(t) = (ϕε ∗ θν)(t)− (ϕε ∗ θν)(T ),

where θν = θν(t), ν > 0, is a standard mollifier sequence on R. Here, for technical purposes, we define
ϕε(r) by ϕε(0) and ϕε(T ) for r ∈ (−1, 0) and r ∈ (T, T + 1), respectively. Then, since ∇ϕεν(T ) = 0,
we have ˆ T

0
H1 〈%εδ(t)∇ϕεν(t),∇(ϕεν(t))t〉H−1 dt =

1

2

ˆ
QT

%εδ(t, x)|∇ϕεν(t, x)|2tdtdx

= −1

2

ˆ
Rd
%εδ(0, x)|∇ϕεν(0, x)|2dx− 1

2

ˆ
QT

%δ(t, x)|∇ϕεν(t, x)|2dtdx

≤ −1

2

ˆ
QT

(%δ)t(t, x)|∇ϕεν(t, x)|2dtdx.

Letting ν → 0, we get by (7.14)-(7.15) that (7.13) holds, as claimed. �

Now, by (7.6) and (7.13), we have

ˆ
QT

|(ϕε)t(t, x)|2dtdx =

ˆ T

0
H1〈%εδ(t)∇ϕε(t),∇(ϕε)t(t)〉H−1 dx+

ˆ
QT

f(t, x)(ϕε)t(t, x)dtdx

≤ −1

2

ˆ
QT

(%δ)t(t, x)|∇ϕε(t, x)|2dtdx+

ˆ
QT

f(t, x)(ϕε)t(t, x)dtdx.
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Since (%δ)t ∈ L∞(QT ), this implies by Young’ inequality

ˆ
QT

|(ϕε)t|2dtdx ≤ −
ˆ
QT

(%δ)t|∇ϕε|2dtdx+

ˆ T

0

|f(t)|2L2(Rd) dt.

From the definition of %δ we infer
−(%δ)t ≤ C2δ

−1%δ, (7.16)

and hence we obtain

ˆ
QT

|(ϕε)t|2dtdx ≤ C
ˆ
QT

%δ|∇ϕε|2dtdx+

ˆ T

0

|f(t)|2L2(Rd) dt, (7.17)

where C > 0 only depends on p, q, d and δ. Then, by (7.6) we have

(ϕλε )t + div((%δ + ε)∇ϕλε ) = fηλ + η′λϕε on QT

ϕλε (T, x) = 0, ∀x ∈ Rd.
(7.18)

From what we derived above, we have ϕλε ∈W
2,1
2 (QT ) and

ϕλε ∈ L2((0, T );H2) ∩ C([0, T ];L2), (ϕλε )t ∈ L2((0, T );L2), ϕλε ∈ L∞(QT ). (7.19)

By Remark 7.8, v satisfies (7.3) for all ϕ ∈ C∞c,b([0, T )×Rd). Hence, we infer by density that v satisfies

(7.3) also for all functions ϕ = ϕλε with properties (7.19). Therefore, we have

ˆ
QT

v
(
(ϕλε )t + div(%δ∇ϕλε )

)
dtdx = 0, ∀ε, λ ∈ (0, 1) (7.20)

(see Appendix B for details).
Next, we get by (7.18) the following equality

1

2
|ϕλε (t)|2L2(Rd) + ε

ˆ T

t

|∇ϕλε (s)|2L2(Rd)ds+

ˆ T

t

ˆ
Rd
%δ|∇ϕλε |2dsdx = −

ˆ T

t

ˆ
Rd

(fηλ + η′λϕε)ϕ
λ
εdtdx.

Taking into account (7.11), we get

|ϕλε (t)|2L2(Rd) + ε

ˆ T

t

|∇ϕλε (s)|2L2(Rd)ds+

ˆ
QT

%δ|∇ϕλε |2dtdx ≤ C3, ∀ε, λ ∈ (0, 1). (7.21)

Now, we have as in (7.13) that

ˆ T

0
H1

〈
%εδ(t)∇ϕλε (t),∇(ϕλε (t))t

〉
H−1 dt ≤ −1

2

ˆ
QT

(%δ)t(t, x)|∇ϕλε (t, x)|2dtdx,

and this yields

ˆ
QT

|(ϕλε )t|2dtdx ≤ −
ˆ
QT

(%δ)t|∇ϕλε |2dtdx+ C4

ˆ
QT

(|fηλ|2 + |η′λϕε|2)dtdx, ∀ε ∈ (0, 1).

Then, by (7.12), (7.16) and (7.21) we get

ˆ
QT

|(ϕλε )t|2dtdx ≤
ˆ
QT

%δ|∇ϕλε |2dtdx+ C4

ˆ
QT

(|f |2 + λ−1|ϕε|2)dtdx ≤
(

1 +
1

λ

)
C5,∀ε, λ ∈ (0, 1).

(7.22)
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(Here, we have denoted by Ci, i = 0, 1, 2, ..., several positive constants independent of ε, λ.) Now, we
fix a sequence λn → 0. Hence, by (7.16), (7.17), (7.21) and (7.22) and a diagonal argument, we find a
subsequence εk → 0 such that, for all n ∈ N as k →∞,

ϕεk → ϕ, ϕλnεk → ϕλn weakly in L2(QT )

(ϕεk)t → (ϕ)t, (ϕλnεk )t → (ϕλn)t weakly in L2(QT )

div((%δ + εk)∇ϕλnεk ) → ζλn weakly in L2(QT ).

(7.23)

To finish the proof, we need the following three claims.

Claim 3. t 7→ u(t) and t 7→ ū(t) are weakly continuous from [0, T ] to L2(Rd).

Proof of Claim 3. Since sup
t∈[0,T ]

{|u(t)|L1(Rd), |u(t)|L∞(Rd)} < ∞, also sup
t∈[0,T ]

{|u(t)|L2(Rd)} < ∞. Hence,

for every sequence {tn}n∈N ⊆ [0, T ] with limit t ∈ [0, T ] there is a subsequence {tnk}k∈N such that u(tnk)
has a weak limit in L2(Rd). Due to the weak continuity (in the sense of measures) of t 7→ u(t, x)dx,
this limit is u(t), which implies the L2(Rd)-weak continuity of [0, T ] 3 t 7→ u(t). The same argument
applies to ū. �

Claim 4. We have

lim
n→∞

lim
k→∞

ˆ
QT

vη′λnϕεk dtdx = 0.

Proof of Claim 4. We first note that by (7.23) for every n ∈ N

lim
k→∞

ˆ
QT

vη′λnϕεk dtdx =

ˆ
QT

vη′λnϕdtdx,

and that ϕ ∈ C([0, T ];L2). Furthermore, by (7.12), ϕ(T, ·) = 0. Then, for every λ ∈ (0, 1),

´
QT

vη′λϕdtdx = 1
λ

´ 2λ
λ
η′
(
t
λ

) ´
Rd v(t, x)ϕ(t, x)dtdx+ 1

λ

´ T−λ
T−2λ η

′ (T−t
λ

) ´
Rd v(t, x)ϕ(t, x)dx

=
´ 2
1
η′(τ)dτ

´
Rd v(λτ, x)ϕ(λτ, x)dx+

´ 2
1
η′(τ)dτ

´
Rd v(T − λτ, x)ϕ(T − λτ, x)dx,

where, as λ → 0, both terms converge to zero by Claim 3 and Lebesgue’s dominated convergence
theorem. �

Claim 5. There is α ∈ (0, 1) such that for every λ ∈ (0, 1) there exists Cλ ∈ (0,∞) such that
ˆ
QT

ε|∆ϕλε |1+αwδ dtdx ≤ Cλ, ∀ε ∈ (0, 1). (7.24)

Hence, {ε
1

1+α ∆ϕλε | ε ∈ (0, 1)} is equi-integrable, hence weakly relatively compact in L1(QT ;wδ dtdx).
Therefore, selecting another subsequence if necessary, for every n ∈ N as k →∞, we find

εk∆ϕλnεk → 0 weakly both in L1(QT ;wδ dtdx) and L1(QT ;hwδ dtdx), (7.25)

where h is as in the beginning of the proof.

Proof of Claim 5. By the de la Vallée Poussin theorem and a diagonal argument, (7.25) follows from
(7.24), so we only have to prove (7.24). To this purpose, fix

s ∈
(

2d(p− 1)

p
, d(p− 1)

)
(7.26)

such that

s >
1

γ
=
q(p− 1)− 1

p− 1
(7.27)
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and

s >
2d(p− 1)

d(p− 1)− (p− 2)
(7.28)

This is possible since q < d(p − 1) + 1
p−1 implies 1

γ < d(p − 1) and since d ≥ 2, p > 2, respectively.

We also note that the interval in (7.26) is not empty and that its left boundary point is strictly bigger
than 2, since d ≥ 2, p > 2. Then,

p− 2

p− 1

s

s− 2
< d,

and so we may choose α ∈ (0, 13 ) such that

0 <
p− 2

p− 1

(3α+ 1)s

s(1− α)− 2(α+ 1)
< d (7.29)

and also such that

α <
d(p− 1)− p
d(p− 1) + p

(
<

d(p− 1)

(d+ 2)(p− 2) + d

)
(7.30)

as well as
α < γ, (7.31)

where γ > 0 is defined in Definition 4.1, and α sufficiently small such that

2sγ − (3α+ 1)s > 2(α+ 1)− s(1− α). (7.32)

The final inequality is true for α > 0 sufficiently small due to s > 1
γ . Then, we multiply (7.18) by

sign ∆ϕλε |∆ϕλε |αwδ and integrate over QT to obtain after rearranging
ˆ
QT

(%δ + ε)|∆ϕλε |1+αwδ dtdx ≤
ˆ
QT

|∇%δ| |∇ϕλε | |∆ϕλε |α wδ dtdx

+

ˆ
QT

|(ϕλε )t| |∆ϕλε |α wδ dtdx+

ˆ
QT

|fηλ + η′λϕε| |∆ϕλε |α wδ dtdx. (7.33)

We now show, using (7.19), that the right hand side of (7.33) is finite, hence so is its left hand side.
Indeed, by Young inequality, for any r ∈ (0, 1) and a large enough constant Cr > 1 (both independent
of ε and λ), the second term on the right hand side of (7.33) can be estimated by

|(ϕλε )t|2L2(QT )
+ r

ˆ
QT

|∆ϕλε |1+α%δ wδ dtdx+ Cr

ˆ
QT

w
2

1−α
δ %

− 2α
1−α

δ dtdx. (7.34)

Likewise, we can estimate the last term in (7.33) by

|fηλ + η′λϕε|2L2(QT )
+ r

ˆ
QT

|∆ϕλε |1+α %δ wδ dtdx+ Cr

ˆ
QT

w
2

1−α
δ %

− 2α
1−α

δ dtdx. (7.35)

We note that, for α ∈ (0, 13 ) satisfying (7.30) and (7.31), the definition of ωδ and %δ implies that the
last term in (7.34) and (7.35) are finite. Furthermore, by (7.22) the respective first terms in (7.34),
(7.35) are uniformly bounded in ε ∈ (0, 1). Finally, for any r ∈ (0, 1) and Cr > 1 sufficiently large,
both independent of ε and λ, the first term on the right hand side of (7.33) can be estimated by

r

ˆ
QT

|∆ϕλε |α+1%δ wδ dtdx+ Cr

ˆ
QT

|∇%δ|α+1

%αδ
|∇ϕλε |α+1 wδ dx,

where the second integral is up to a constant bounded by
ˆ
QT

|∇%δ|
2(α+1)
1−α %

− 3α+1
1−α

δ w
2

1−α
δ dtdx+

ˆ
QT

|∇ϕλε |2%δ dtdx
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of which the second integral is uniformly bounded in λ, ε ∈ (0, 1) by (7.21) and, by (7.30) and Young
inequality, the first integral is up to a constant bounded by

ˆ
QT

|∇%δ|s dtdx+

ˆ
QT

w
2s

s(1−α)−2(α+1)

δ %
− (3α+1)s
s(1−α)−2(α+1)

δ dtdx,

where by (7.26), (7.29) and (7.28) as well as (7.32) this quantity is finite. Choosing r small enough,
we hence get from (7.33) and the nonnegativity of %δ the estimate (7.24), and Claim 5 follows. �

Finally, we conclude the proof as follows. We have by Claim 4 and (7.18)

ˆ
QT

fv dtdx = lim
n→∞

lim
k→∞

ˆ
QT

(fηλn + η′λnϕεk)v dtdx

= lim
n→∞

lim
k→∞

ˆ
QT

(ϕλnεk )t + div((%δ + εk)∇ϕλnεk ))v dtdx,

which, taking into account that v = hwδ, by Claim 5 is equal to

lim
n→∞

lim
k→∞

ˆ
QT

(ϕλnεk )t + div(%δ∇ϕλnεk ))v dtdx,

which in turn equals zero by (7.20). Hence,
´
QT

vf dtdx = 0 and so, because f ∈ C∞c (QT ) was
arbitrary, the assertion follows.

7.2 Probabilistic proof of Theorem 7.4 (ii)

We start with the following claim.

Claim: Let T > 0. Pathwise uniqueness holds for (6.3) on [0, T ] among probabilistically weak solutions
(X,W ) with LX ∈ PAδ,T , where we set

PAδ,T := {Q ∈ P(C([0, T ];Rd)) : (Q ◦ π−1t )t∈[0,T ] ∈ Aδ,T }.

Proof of Claim. Let (X,W ), (Y,W ) be two probabilistically weak solutions to (6.3) (on [0, T ]) on the
same stochastic basis, with the same Brownian motion W , X(0) = Y (0) a.s., and LX ,LY ∈ PAδ,T
with LX(t)(dx) = uX(t, x)dx and LY (t)(dx) = uY (t, x)dx, for all t ∈ [0, T ]. Imitating the proof of
Theorem 6.13, we may similarly estimate for all n ∈ N and ε > 0

E
[
ln

(
1 +
|X(t ∧ τn)− Y (t ∧ τn)|2

ε2

)]
.δ

ˆ T

0

ˆ
Bn(0)

M |Dx∇%δ(s, ·)|(x)uX(s, x)dxds+

ˆ T

0

ˆ
Bn(0)

M |Dx∇%δ(s, ·)|(x)uY (s, x)dxds

+

ˆ T

0

ˆ
Rd

(
M |∇%

1+γ
2

δ (s, ·)|(x)
)2
wδ(s, x)−1|x|−

p−2
q(p−1)−1uX(s, x)dxds

+

ˆ T

0

ˆ
Rd

(
M |∇%

1+γ
2

δ (s, ·)|(x)
)2
wδ(s, x)−1|x|−

p−2
q(p−1)−1uY (s, x)dxds

≤ 2

ˆ T

0

ˆ
Bn(0)

M |Dx∇%δ(s, ·)|(x)wδ(s, x)dxds+ 2

ˆ T

0

ˆ
Rd

(
M |∇%

1+γ
2

δ (s, ·)|(x)
)2
|x|−

p−2
q(p−1)−1 dxds.

By the same arguments as in Theorem 6.13, we conclude the finiteness of the right-hand side of the
above chain of inequalities, and, finally, that X ≡ Y a.s., by letting ε ↓ 0. This finishes the proof of
the claim.
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Proof of Theorem 7.4 under assumption (ii). Let u, ū ∈ Aδ,T be distributional solutions to
(7.1) in the sense of Definition 7.1, both with initial condition wδ(0, x)dx. By Theorem 3.3, there
exist probabilistically weak solutions (X,W 1), (Y,W 2) to (6.3) such that LX(t)(dx) = u(t, x)dx and
LY (t)(dx) = ū(t, x)dx, for all t ∈ [0, T ], respectively. In particular, LX ,LY ∈ PAδ,T . Since the previous
claim implies weak uniqueness among probabilistically weak solutions whose laws are elements in PAδ,T

(cf. [33, Proof of Theorem 1.3.1]), we obtain LX = LY . It follows that u(t, ·) = ū(t, ·) dx-a.s., for all
t ∈ [0, T ]. This completes the proof.

A Proof of Remark 7.8

Clearly, C∞c ([0, T )×Rd) is dense in C∞c,b([0, T )×Rd) (defined in Remark 7.8) with respect to uniform

convergence of all partial derivatives (including zero derivatives) on [0, T )×Rd. Let ϕ ∈ C∞c,b([0, T )×Rd)
and (ϕk)k∈N ⊆ C∞c ([0, T )×Rd), such that ϕk → ϕ as k →∞ in the above sense. Then, in particular,

(i) ϕk(0)→ ϕ(0) uniformly on Rd.

(ii) (ϕk)t → ϕt, ∇ϕk → ∇ϕ, ∆ϕk → ∆ϕ uniformly on [0, T )× Rd.

Since u ∈ L1(QT ) ∩ L∞(QT ), %δ ∈ L∞(QT ), ∇%δ ∈ L1(QT ), (i)–(ii) yield

0 = lim
k

(ˆ
QT

u((ϕk)t + div(%δ∇ϕk))dtdx+

ˆ
Rd
ϕk(0)dν

)
=

ˆ
QT

u(ϕt + div(%δ∇ϕ))dtdx+

ˆ
Rd
ϕ(0)dν,

which proves Remark 7.8.

B Details for (7.20)

We know ϕλε ∈W
2,1
2 (QT ). It is standard that C∞c,b([0, T )×Rd) (as introduced in Remark 7.8) is dense

in W 2,1
2 (QT ) ∩ {g ∈W 2,1

2 (QT ) : g(T ) = 0} with respect to the usual norm

(|g|2,12 )2 := |g|2L2(QT )
+ |gt|2L2(QT )

+ |∇g|2L2(QT )
+ |∆g|2L2(QT )

.

Now, let (ϕk)k∈N ⊆ C∞c,b([0, T ) × Rd) such that ϕk
k→ ϕλε with respect to this norm. Since ν is the

zero measure and since v ∈ L1 ∩ L∞(QT ), %δ ∈ L∞(QT ), ∇%δ ∈ L2(QT ), (cf. Lemma 7.3) and
div(%δ∇ϕλε ) = %δ∆ϕ

λ
ε +∇%δ · ∇ϕλε , we deduce

0 = lim
k

ˆ
QT

v((ϕk)t + div(%δ∇ϕk))dtdx =

ˆ
QT

v((ϕλε )t + div(%δ∇ϕλε ))dtdx,

which proves (7.20).

C Linear and nonlinear Fokker–Planck equations

Here we recall the definition of linear and nonlinear Fokker–Planck equations and their standard
notion of distributional solution. The linear FPE associated with Borel measurable coefficients aij , bi :
(0,∞)× Rd → R, 1 ≤ i, j ≤ d, is the second-order parabolic differential equation for measures

∂tµt = ∂ij(aij(t, x)µt)− ∂i(bi(t, x)µt), (t, x) ∈ (0,∞)× Rd. (C.1)

Usually, an initial condition µ0 = ν ∈M+
b is imposed.
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Definition C.1. A (distributional) solution to (C.1) with initial condition ν ∈ M+
b is a weakly

continuous curve (µt)t≥0 of signed locally finite Borel measures on Rd such that

ˆ T

0

ˆ
Rd
|aij(t, x)|+ |bi(t, x)|dµt(x)dt <∞, ∀T > 0,

and ˆ
Rd
ψdµt(x)−

ˆ
Rd
ψdν =

ˆ t

0

ˆ
Rd
aij(s, x) ∂ijψ(x) + bi(s, x)∂iψ(x)dµs(x)ds, ∀t ≥ 0,

for all ψ ∈ C2
c (Rd). A solution is called probability solution, if ν and each µt, t ≥ 0, are probability

measures. Instead of the initial time 0, one may consider an initial time s > 0. It is obvious how
to generalize the definition in this regard. In this case, the initial condition is the pair (s, ν) and the
solution is defined on [s,∞).

For the nonlinear FPE (1.3), the notion of distributional solution is similar.

Definition C.2. A (distributional) solution to (1.3) with initial condition ν is a weakly continuous
curve (µt)t≥0 of signed locally finite Borel measures on Rd such that (t, x) 7→ aij(t, x, µt) and (t, x) 7→
bi(t, x, µt) are product Borel measurable on (0,∞)× Rd,

ˆ T

0

ˆ
Rd
|aij(t, x, µt)|+ |bi(t, x, µt)|dµt(x)dt <∞, ∀T > 0,

and ˆ
Rd
ψdµt(x)−

ˆ
Rd
ψdν =

ˆ t

0

ˆ
Rd
aij(s, x, µs) ∂ijψ(x) + bi(s, x, µs)∂iψ(x)dµs(x)ds, ∀t ≥ 0,

for all ψ ∈ C2
c (Rd). The notion of probability solution and the extension to initial times s > 0 is as in

the linear case.

D On the Hardy–Littlewood maximal operators

Let d, n ∈ N, and denote by λd the d-dimensional Lebesgue measure.

D.1 Definitions and basic properties

We recall the definition and properties of (local) Hardy–Littlewood maximal operators on the set of
(extended) signed Borel measures on Rd, where the latter are denoted as Mloc(Rd;Rn) in the following.
Furthermore, if µ ∈Mloc(Rd;Rn), then |µ| denotes its variation measure.

The following definition and lemmatas are essentially taken from [21].

Definition D.1 ([21, Definition A.1]). Let µ ∈ Mloc(Rd;Rn) and R ∈ (0,∞]. We define the (local)
maximal function as

MR |µ|(x) := sup
0<r<R

1

λd(Br(0))

ˆ
Br(x)

|µ|(dx), x ∈ Rd,

In the case R = ∞ we set M := M∞. Furthermore, if µ is of the form µ(dx) = f(x)dx, where
f ∈ L1

loc(Rd;Rn), then we write MR |f | := MR |µ|.

Lemma D.2 ([20, Lemma 3.1]). Let f ∈ BV (Rd;Rn). Then there exists a constant Cd > 0 depending
only on the dimension d, and a set N ∈ B(Rd) with λd(N) = 0 such that for all x, y ∈ N{

|f(x)− f(y)| ≤ Cd (M |Df |(x) + M |Df |(y)) |x− y|, (D.1)

where Df = (∂xjf
i)1≤i≤n,1≤j≤d denotes the matrix of all Schwartz distributional derivatives of f ’s

component-functions in form of finite signed Borel measures on Rd.
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Remark D.3. Consider the situation of Lemma D.2. Let ϕε = ε−dϕ(·/ε), ε > 0, be a standard Dirac
sequence with respect to some nonnegative ϕ ∈ C∞c (Rd)∩L1(Rd) with

´
ϕ(x)dx = 1. Let x, y ∈ Rd. If

for all z ∈ {x, y} we have

f(z) = lim
ε→0

(f ∗ ϕε)(z), (D.2)

then (D.1) holds for this pair x, y. This follows from the proof of [20, Lemma 3.1]. In particular, if
f ∈ C(Rd;Rn), then (D.1) holds for all x, y ∈ Rd.

Furthermore, it follows from [2, Proposition 3.92 (b)], that if x ∈ Rd is an approximate jump point
of f (in the sense of [2, Definition 3.67]), then M |Df |(x) = +∞. Then, with the convention 0 ·∞ = 0,
(D.1) is trivially satisfied with respect to such x, and every y ∈ Rd.

Lemma D.4 ([21, Lemma A.2]). (i) Let µ ∈ Mloc(Rd;Rn) and R ∈ (0,∞]. Then for λd-a.e. x ∈
Rd, MR|µ|(x) <∞.

(ii) Let p ∈ (1,∞). Then there exists a constant Cd,p > 0 such that for all f ∈ Lploc(Rd;Rn) and all
ρ > 0

ˆ
Bρ(0)

(MR |f |(x))pdx ≤ Cd,p
ˆ
Bρ+R(0)

|f(x)|pdx.

For p = 1, the previous statement does not hold. However, for p = 1 one has the following weak
estimate: There exists a constant Cd > 0 such that for all f ∈ L1

loc(Rd;Rn)

λd ({x ∈ Bρ(0) : MR |f |(x) > α}) ≤ Cd
α

ˆ
Bρ+R(0)

|f(x)|dx.

D.2 Muckenhoupt weights

Definition D.5 ([57, p. 194]). Let w ∈ L1
loc(Rd). Let p, p′ ∈ (1,∞) such that p−1 + (p′)−1 = 1. If

there exists C > 0 such that for all balls B ⊂ Rd

1

λd(B)

ˆ
B

w(x)dx ·
[

1

λd(B)

ˆ
B

w(x)−
p′
p dx

] p
p′

≤ C <∞, (D.3)

then w ∈ Ap.

Theorem D.6 ([57, p. 201, Theorem 1]). Suppose 1 < p < ∞ and w ∈ Ap. Then there exists a
constant C > 0 such that

ˆ
Rd

(M |f |(x))pw(x)dx ≤ C
ˆ
Rd
|f(x)|pw(x)dx. (D.4)

D.3 Maximal operator of the surface measure restricted to the boundary
of a ball

We consider the case d = 3. We set w3 := λ3(B1(0)).

Lemma D.7. Let R > 0 and x ∈ R3\(∂BR(0) ∪ {0}). Then

M |S(· ∩BR(0))|(x) =

{
2πR
w3

√
27

(|x|||x| −R|)−1, if
√

3||x| −R| ≤ |x|+R;
4πR2

w3
((|x|+R)3)−1, if |x|+R <

√
3||x| −R|.

(D.5)
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ρ+
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h

−b

b

θ

rR

Figure 1: Projection of two intersecting balls onto the x1/x2 plane. The projection of the spherical
cap ∂BR(0) ∩Br(x) is highlighted in red.

Proof. Let us assume for a moment that Br(x)∩ ∂BR(0) 6= ∅ and Br(x)∩ ∂BR(0) 6= ∂BR(0), which is
exactly the case when ||x|−R| < r ≤ |x|+R. Then S(Br(x)∩∂BR(0)) can be interpreted geometrically
as the area of the spherical cap Br(x)∩∂BR(0). For further calculations we wish to express the height
h of the spherical cap as a function of r with parameters |x| and R, more precisely as

h ≡ hR,|x| : (||x| −R|, |x|+R]→ [0, 2R]. (D.6)

We note that the surface measure S is invariant under rotation. Hence, we may assume without loss of
generality x = (|x|, 0, 0). Moreover, there are exactly two different vectors ρ+, ρ− in the x1/x2-plane1

of the form ρ+ = (a, b, 0), ρ− = (a,−b, 0) where a, b ∈ (0, R) are determined by the following two
equations {

a2 + b2 = R2,

(a− |x|)2 + b2 = r2.

By subtracting the second equation from the first, one easily deduces that a = R2+|x|2−r2
2|x| . Here,

we refer to [67] for the detailed elementary calculation and a similar geometric visualization as in
Figure 1, where the latter is, however, tailored to our setting. Hence, the height of the spherical cap

is h(r) = R− R2+|x|2−r2
2|x| , r ∈ (||x| −R|, |x|+R]. (In fact, the previous arguments translate to higher

dimensions, and the formula for the height of a general hyperspherical cap is the same.) Let us extend
h (continuously) to a function on [0,∞) by setting

h(r) := 2R, for r > |x|+R, and h(r) := 0, for 0 < r ≤ ||x| −R|.

Using polar coordinates, it is standard to note

S(Br(x) ∩ ∂BR(0)) = 2πRhR,|x|(r) ∀r ≥ 0. (D.7)

We aim to identify the maximum of the function

f(r) := 2πRr−3hR,|x|(r) = 2πRr−3
(
R− |x|

2 +R2 − r2

2|x|

)
, r ∈ [||x| −R|, |x|+R].

1The hyperplane spanned by (1, 0, 0), (0, 1, 0) in R3.
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Note that f is twice differentiable in (||x| −R|, |x|+R) with derivatives

f ′(r) =
πR(3(|x| −R)2 − r2)

|x|r4
,

f ′′(r) =
2πR(r2 − 6(|x| −R)2)

|x|r5
.

So, if
√

3||x| − R| ∈ (||x| − R|, |x| + R), f has a global maximum point only at
√

3||x| − R|. In this
case, we have

f(
√

3||x| −R|) =
2πR√

27
(|x|||x| −R|)−1.

Since

max (f(||x| −R|), f(|x|+R)) =
4πR2

(|x|+R)3
,

(D.5) is evident. This finishes the proof.

E Details for the proof of Theorem 6.13

For 1 ≤ i, j ≤ d, let

bi, σij : [0,∞)× Rd → R

be Borel measurable functions. Consider the SDE{
dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), t ≥ 0,

LX(t) � dx, for dt-a.e. t ≥ 0,
(E.1)

where we denote the absolute continuity of a Borel probability measure µ on Rd with respect to
d-dimensional Lebesgue measure by µ << dx.

Definition E.1. A probabilistically weak solution to (E.1) is an adapted stochastic process X =
(X(t))t≥0 on a stochastic basis (Ω,F , (Ft)t≥0,P) with an (Ft)-standard Brownian motion W , such
that

E
[ˆ T

0

|b(t,X(t))|+ |σ(t,X(t))σT (t,X(t))|dt
]
<∞ ∀T > 0, (E.2)

and P-a.s.

X(t) = X(0) +

ˆ t

0

b(s,X(s))ds+

ˆ t

0

σ(s,X(s))dW (s) ∀t ≥ 0.

Proposition E.2. Let (X,W ) be a probabilistically weak solution to (E.1). Then, (X,W ) is also a
probabilistically weak solution to (E.1) where b, σ are replaced by Borel measurable functions b̄, σ̄ with
components

b̄i, σ̄ij : [0,∞)× Rd → R,

1 ≤ i, j ≤ d, satisfying

b = b̄ dt⊗ dx-a.s.,

σ = σ̄ dt⊗ dx-a.s.

In particular, probabilistically weak solutions to (E.1) do not depend on the dt ⊗ dx-version of the
coefficients b, σ.
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Proof. For t ≥ 0, we set

Y (t) := X(0) +

ˆ t

0

b̄(s,X(s))ds+

ˆ t

0

σ̄(s,X(s))dW (s).

We have

E[|X(t)− Y (t)|] ≤ E
[∣∣∣∣ˆ t

0

b(s,X(s))− b̄(s,X(s))ds

∣∣∣∣]+

(
E

[∣∣∣∣ˆ t

0

σ(s,X(s))− σ̄(s,X(s))dW (s)

∣∣∣∣2
]) 1

2

(E.3)

≤
ˆ t

0

E
[∣∣b(s,X(s))− b̄(s,X(s))

∣∣] ds+

(ˆ t

0

E
[
|σ(s,X(s))− σ̄(s,X(s))|2

]
ds

) 1
2

= 0,

(E.4)

where we used Jensen’s inequality in the first inequality, and Itô’s isometry and Fubini’s theorem in
the second inequality. For the last equality, we used the assumption LX(s) � dx for ds-a.e. s ≥ 0. By
the (a.s.-)continuity of X and Y , we conclude X ≡ Y a.s. This finishes the proof.
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[54] M. Röckner and X. Zhang. Weak uniqueness of Fokker–Planck equations with degenerate and
bounded coefficients. C. R. Math. Acad. Sci. Paris, 348(7-8):435–438, 2010.

[55] L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2.
Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Itô calculus,
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