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Abstract. We analyze a semi-implicit finite volume scheme for the Gray–Scott system, a model
for pattern formation in chemical and biological media. We prove unconditional well-posedness of
the fully discrete problem and establish qualitative properties, including positivity and boundedness
of the numerical solution. A convergence result is obtained by compactness arguments, showing
that the discrete approximations converge strongly to a weak solution of the continuous system.
Under additional regularity assumptions, we further derive a priori error estimates in the L2 norm.
Numerical experiments validate the theoretical analysis, confirm a rate of convergence of order 1,
and illustrate the ability of the scheme to capture classical Gray–Scott patterns.

1. Introduction

We consider the numerical approximation of the Gray–Scott reaction-diffusion system on a
bounded domain D Ă R ˆ R with Lipschitz boundary. This system models the evolution of two
interacting chemical species with concentrations u :“ upt, xq and v :“ vpt, xq, governed by the
nonlinear system:

(1.1)
#

Btu “ du∆u´ uv2 ` F p1 ´ uq,

Btv “ dv∆v ` uv2 ´ pF ` kqv,

for pt, xq P p0, T q ˆ D, supplemented with initial conditions up0, xq “ u0pxq, vp0, xq “ v0pxq. The
constants du ą 0 and dv ą 0 are the diffusion coefficients for the chemical species, respectively;
F ą 0 represents the feed rate of the reactant u, and k ą 0 denotes the removal rate of the
intermediate species v. In addition, we impose homogeneous Neumann boundary conditions on
BD, modeling a closed or insulated system in which no material can enter or leave the domain.
In biological terms, this models scenarios such as a petri dish or a membrane-bounded cell where
neither species can escape the domain.

The Gray–Scott model, originally introduced by P. Gray and S.K. Scott in the 1980s, see e.g.
[7], is derived as a simplification of the Oregonator model of the Belousov–Zhabotinsky reaction.
The Gray–Scott popularity as a model system grew significantly following the influential work
of Pearson [11], who demonstrated through numerical simulations that even minimal reaction-
diffusion systems like Gray–Scott can give rise to surprisingly complex and diverse patterns. As
discussed in texts such as Epstein and Pojman’s Introduction to Nonlinear Chemical Dynamics [5],
the model is also known to exhibit both deterministic chaos and spatial patterning. As such, beyond
its chemical origins, the Gray–Scott system serves as a paradigmatic example in mathematical
biology, physics, and materials science, where it illustrates emergent behavior, self-organization,
and instability-driven pattern formation.

Concerning the mathematical well-posedness. The Gray–Scott model belongs to a broader
class of reaction-diffusion systems whose mathematical properties, such as existence, uniqueness,
and regularity of solutions, have been extensively studied using both weak and strong solution
frameworks.

For initial data u0, v0 P L2pDq, one can construct global-in-time weak solutions using classical
techniques, including energy estimates, monotonicity methods, and compactness arguments (see,
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e.g., [1, 12]). These solutions are defined in the distributional sense and satisfy associated en-
ergy inequalities. When the nonlinearities satisfy structural conditions such as quasi-positivity,
cooperativity, and subcritical growth, global existence is ensured under homogeneous Neumann or
Dirichlet boundary conditions.

If the initial data are further assumed to lie in L8pDq, then the solutions exhibit improved
regularity: they remain uniformly bounded in L8pDq for all times, and standard bootstrapping
and maximum principle arguments show that they are also continuous in space and time. In this
case, one obtains global strong solutions, which satisfy the system almost everywhere and possess
additional spatial regularity.

An intermediate case is when u0, v0 P H1pDq. In this setting, the solution enjoys enhanced
regularity, namely

u, v P Cpr0, T s;L2pDqq X L2p0, T ;H1pDqq.

This follows from standard parabolic regularity theory, as shown, e.g., in Amann’s analysis of
quasilinear parabolic systems [1, Theorem 2.1], which demonstrates continuity in time and Sobolev
regularity under minimal assumptions on the initial data. Although framed for general quasilinear
systems, these results apply directly to the semilinear structure of the Gray–Scott model. A similar
conclusion is shown in Pierre’s survey [12], where the regularizing effect of the diffusion operator
is shown to yield such space-time regularity for initial data in H1pDq.

Even in the minimal case, where u0, v0 P L2pDq, the smoothing property of the heat semigroup
ensures that for any t ą 0, the solution becomes essentially bounded in space

u, v P L8pDq, for all t ě t0 ą 0,
as established, for example, in [13]. Therefore, under general assumptions, bounded domain D Ă

R ˆ R with Lipschitz boundary, quasi-positive nonlinearities, and initial data in L8pDq, one can
show that

u, v P L8p0,8;L8pDqq,

with further regularity determined by the spatial dimension, the form of the nonlinearity, and the
choice of boundary conditions. These regularity properties are not only central to the theoretical
understanding of the system but also essential in the numerical modeling of the system.

On the numerical side, several classes of numerical schemes have been proposed for the Gray–
Scott system, each motivated by the nonlinear and stiff nature of the equations:

Zhang, Wong, and Zhang [14] considered finite element discretizations, constructing a second-
order implicit-explicit (IMEX) Galerkin finite element scheme, treating the diffusion terms im-
plicitly and the nonlinear reaction terms explicitly. Their analysis established optimal L2 error
estimates and confirmed second-order accuracy in both space and time. Hansen [9] proposed
more abstract convergence results for operator-splitting methods applied to semilinear evolution
equations that includes the Gray–Scott model as a canonical example. Their stabilized finite ele-
ment formulations mitigates spurious oscillations, particularly in parameter regimes that generate
sharp patterns. More recently, Haggar, Mahamat Malloum, Fokam, and Mbehou [4] introduced
a linearized two-step finite element scheme combining Crank–Nicolson with a second-order Back-
ward Differentiation Formula also called BDF2. Their error-splitting analysis proves unconditional
stability and optimal convergence in both L2 and H1 norms.

Another important line of research is based on the Method Of Lines approach. In this approach,
the spatial variables are discretized (e.g., by finite differences or finite elements), transforming the
Gray–Scott PDE system into a large system of stiff Ordinary Differential Equations (ODEs) in time.
Once this semi-discrete system is obtained, one can directly apply standard ODE solvers. In [2],
Boscarino, Filbet, and Russo used high-order IMEX Runge–Kutta methods, where the stiff linear
diffusion terms are treated implicitly while the nonlinear reaction terms are handled explicitly. This
strategy combines the stability advantages of implicit ODE solvers with the efficiency of explicit
treatment of nonlinearities, leading to schemes with favorable stability properties and high-order
accuracy suitable for multiscale reaction-diffusion dynamics.

Together, these works illustrate the diversity of available discretization strategies, but most
analyses focus on finite element or spectral frameworks coupled with IMEX time integration. By
contrast, finite volume schemes, despite their popularity in applications due to local conservation
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and their natural fit to Cartesian grids, have received far less rigorous mathematical attention for
the Gray–Scott system.

In this work, we develop and rigorously analyze a fully discrete finite volume scheme for the
Gray–Scott system. The method is based on a first-order IMEX discretization, where diffusion is
treated implicitly and nonlinear reaction terms explicitly. We prove unconditional well-posedness
of the discrete problem and establish key qualitative properties, including non-negativity and
boundedness of the numerical solution. Using compactness arguments combined with weak-strong
uniqueness, we show that the fully discrete approximation converges strongly in L2-norm to a
weak solution of the continuous system. Under additional regularity assumptions, we further
derive error estimates in the L2-norm. Finally, numerical experiments confirm the theoretical
results and reproduce classical Gray–Scott patterns..

The remainder of this paper is organized as follows. In Section 2, we introduce the functional
setting and notation; and define the notion of weak solution for the Gray–Scott system; and
summarizes its essential analytical properties, including existence, regularity, and uniqueness. In
Section 3, we describe the spatial and temporal discretization using a finite volume method and
formulate the fully discrete semi-implicit scheme. Section 4 is devoted to the main results. There,
we establish that the discrete solution converges to the weak solution of the continuous problem,
and derive error estimates under suitable regularity assumptions on the exact solution. Finally,
Section 5 presents numerical experiments that validate the theoretical results and illustrate the
pattern formation behavior of the model. We conclude in Section 6 with a discussion of potential
extensions, including data assimilation and feedback control.

2. Preliminaries

In this section, we introduce the mathematical framework and notations employed throughout
the paper. We also recall key well-posedness results for the Gray–Scott system (1.1).

2.1. Functional settings and notations. We denote by Lp :“ LppDq, for 1 ď p ď 8, the usual
Lebesgue spaces of measurable functions defined on D. The associated norm is written as

}u}
p
Lp :“

ż

D
|upxq|p dx, for 1 ď p ă 8, }u}L8 :“ esssup

xPD
|upxq|.

For s P N and 1 ď p ď 8, the Sobolev space W s,ppDq consists of functions whose weak
derivatives up to order s belong to LppDq. When p “ 2, we write Hs :“ HspDq “ W s,ppDq, which
is a Hilbert space with inner product and norm

ppu, vqqα :“
ÿ

|α|ďs

pBαu, Bαvq, }u}2
Hs :“

ÿ

|α|ďs

}Bαu}2
L2 ,

where p ¨ , ¨ q denotes the standard inner product in L2.
We consider solutions subject to homogeneous Neumann boundary conditions. Since such prob-

lems determine solutions only up to an additive constant, we work with the mean-zero subspaces

H :“
"

u P L2 :
ż

D
upxq dx “ 0

*

, V :“
"

u P H1 :
ż

D
upxq dx “ 0

*

,

and let V1 :“ H´1 denote the dual space of V; by x ¨ , ¨ y, the duality pairing between V and V1.
For time-dependent functions, we write Lpp0, T ;Xq to denote Bochner spaces of X-valued func-

tions that are Lp-integrable in time, where X is a Banach space.

2.2. Weak Formulation. We now define the notion of weak solution for the Gray–Scott system
(1.1) and state the assumptions under which existence and uniqueness are guaranteed.

Definition 2.1 (Weak solution). Let T ą 0. A pair of functions pu, vq such that

u, v P L2p0, T ;Vq X L8p0, T ;Hq, Btu, Btv P L2p0, T ;V1q



4 TSIRY AVISOA RANDRIANASOLO

is a weak solution to the Gray–Scott system (1.1) if for all test functions ϕ, ψ P V and almost every
t P p0, T q, the equations

xBtuptq, ϕy ` dup∇uptq,∇ϕq “ p´uptqv2ptq ` F p1 ´ uptqq, ϕq ,(2.1)
xBtvptq, ψy ` dvp∇vptq,∇ψq “ p uptqv2ptq ´ pF ` kqvptq, ψq(2.2)

hold with initial data satisfying
(2.3) u0, v0 P L8, with 0 ď u0pxq ď 1, v0pxq ě 0 a.e. in D.

The condition (2.3) reflects the physical interpretation of u and v as concentrations, and ensures
that the solution remains in a physically meaningful range.

Under the above assumptions, global-in-time weak solutions exist and remain nonnegative and
bounded. Specifically, one has

0 ď upt, xq ď 1 and vpt, xq ě 0 for almost every pt, xq P r0, T s ˆD,

and moreover,
u, v P L8p0, T ;L8q.

These results follow from the general theory of reaction-diffusion systems with quasi-positive non-
linearities and bounded initial data (see, e.g., [1, 12, 13]). In particular, the Gray–Scott system
satisfies the structural assumptions required for the application of maximum principles, comparison
techniques, and a priori bounds. The quasi-positivity of the reaction terms ensures that nonneg-
ative initial data yields nonnegative solutions, while boundedness is propagated by the nonlinear
structure and diffusion.

Moreover, if the initial data u0, v0 P H1, then the solution enjoys enhanced regularity, notably
u, v P Cpr0, T s;L2q X L2p0, T ;H1q.

This follows from classical parabolic regularity theory, relying on energy estimates and the smooth-
ing effect of the diffusion operator. Uniqueness of weak solutions follows from standard monotonic-
ity and Gronwall-type arguments (see, e.g., [10, 12]).

3. Semi-implicit finite volume discretization

In this section, we introduce the fully discrete finite volume scheme used to approximate solutions
of the Gray–Scott system (1.1). The method is based on a spatial discretization over a uniform
mesh and a first-order semi-implicit time integration scheme.

3.1. Finite volume discretization of the spatial domain. Let Th “ tKu denote a finite
collection of non-overlapping square control volumes of side length h, forming a uniform Cartesian
mesh of D. Each cell K P Th is associated with a representative point xK P K, chosen as the
geometric center of K, so that the cell average uK « upxKq for all K P Th.

To discretize the diffusion operator, we follow the finite volume framework outlined in [6].
Integrating the Laplacian over each control volume and applying the divergence theorem gives

ż

K
∆udx “

ż

BK
∇u ¨ nK dS «

ÿ

σĂBK

Φσ,

where nK is the outward unit normal to BK, and Φσ is the numerical flux across the face σ.
We use the two-point flux approximation to define the flux as

Φσ “ ´|σ|
uL ´ uK

dKL
,

where uK and uL are the values at the centers of adjacent cells K and L, and dKL “ |xL ´ xK |.
This leads to the discrete approximation

ż

BK
∇u ¨ nK dS « ´

ÿ

σĂBK

τσpuL ´ uKq,

with transmissibility coefficient τσ “ |σ|{dKL. For a uniform mesh, dKL “ h.
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We define the discrete space Hh Ă L2pDq of piecewise constant functions,

Hh :“
"

uh P H : uh|K “

ˆ

1
h2

ż

K
upyq dy

˙

for all K P Th

*

.

For wh, ϕh P Hh, the discrete inner products are defined as
`

wh, ϕh

˘

h
:“ h2

ÿ

KPTh

wKϕK ,
`

∇wh,∇ϕh

˘

h
:“

ÿ

K,LPTh
σ“K|L

τσpwK ´ wLqpϕK ´ ϕLq.

Given this setup, we define the cellwise average interpolant Ih : V Ñ Hh, such that

Ihu :“
ÿ

KPTh

ˆ

1
h2

ż

K
upyq dy

˙

χK , @u P V,

where χK denotes the characteristic function of K.
To estimate the error introduced by the interpolant Ih, we recall the following result from finite

element theory, which also holds in the finite volume framework, see [3, Theorem 4.4.4 ]:
Proposition 3.1 (Bramble–Hilbert lemma). Let K Ă D be a bounded Lipschitz domain of diam-
eter diampKq and m ě 0 be an integer. Let ϕ : H1pKq Ñ L2pKq be a bounded linear functional
that vanishes on all polynomials in Pm (i.e., of degree ď m). Then, for all w P HspKq,

}ϕpwq}L2pKq ď CdiampKqs´m}w}HspKq,

with a constant C that depends only on the shape of K and the choice of the functional ϕ.
Using this, we state the following interpolation estimate:

Lemma 3.2. For any u P H1, the following inequality holds
}u´ Ihu}2

L2 ď γ0h
2}∇u}2

L2 ,

where the constant γ0 depends only on the reference cell geometry and the quadrature rule.
Proof. Let u P V. Because IHu is a piecewise constant

}u´ Ihu}2
L2 “

ÿ

KPTh

›

›

›
u´

1
h2

ż

K
upyq dy

›

›

›

2

L2pKq
.

Since the interpolant integrates constants exactly, the associated error functional

ϕpuq :“ u´
1
h2

ż

K
upyq dy

vanishes on the constants of each K. Thus, Proposition 3.1 applies directly, yielding
›

›

›
u´

1
h2

ż

K
upyq dy

›

›

›

2

L2pKq
ď Ch2}u}2

H1pKq.

Summing over K, we obtain the global estimate, as claimed. □

3.2. The fully discrete scheme. We now define the fully discrete numerical scheme.
The time interval r0, T s is divided into N uniform time steps of size ∆t ą 0, with tn “ n∆t

for n “ 0, . . . , N , where t0 “ 0, and tN “ T . At each time step tn, let un
h, v

n
h P Vh denote the

approximations of uptn, ¨q and vptn, ¨q.
Algorithm 3.1. For n “ 0, . . . , N ´ 1:

Find un`1
h , vn`1

h P Vh such that
`

un`1
h ´ un

h, ϕh

˘

h
` ∆t du

`

∇un`1
h ,∇ϕh

˘

h
“ ∆t

`

´un
hpvn

hq2 ` F p1 ´ un
hq, ϕh

˘

h
,(3.1)

`

vn`1
h ´ vn

h , ψh

˘

h
` ∆t dv

`

∇vn`1
h ,∇ψh

˘

h
“ ∆t

`

un
hpvn

hq2 ´ pF ` kqvn
h , ψh

˘

h
,(3.2)

for all ϕh, ψh P Vh.
This scheme uses an implicit treatment of the diffusion operator together with an explicit dis-

cretization of the nonlinear reaction terms. Such an IMEX formulation ensures stability in the
presence of stiff dynamics, while preserving the simplicity and local conservation properties that
are characteristic of the finite volume method.
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4. Main results

Let pun
h, v

n
hq P Vh ˆ Vh be the solution to the Gray–Scott system (1.1) as computed by Algo-

rithm 3.1. For all t P ptn, tn`1s, we define piecewise linear in time interpolants

u∆t
h ptq “

tn`1 ´ t

∆t un
h `

t´ tn

∆t un`1
h , v∆t

h ptq :“ tn`1 ´ t

∆t vn
h `

t´ tn

∆t vn`1
h .

Theorem 4.1 (Convergence). As h,∆t Ñ 0, the sequences u∆t
h , v∆t

h defined above converge to
the functions u, v, which satisfy the weak formulation of the Gray–Scott system as defined by
Definition 2.1. The convergence is understood in the following sense:

u∆t
h , v∆t

h Ñ u, v strongly in L2p0, T ;Hq,

∇u∆t
h ,∇v∆t

h á ∇u,∇v weakly in L2p0, T ;H ˆ Hq.

The proof of Theorem 4.1 is postponed in Section 4.1.
Theorem 4.2 (Error estimate). With further regularity, i.e.,

u, v P L8p0, T ;H2 X Hq, Btu, Btv P L2p0, T ;Vq, Bttu, Bttv P L8p0, T ;V1q;
we have

max
0ďnďN

´

}un
h ´ uptnq}H ` }vn

h ´ vptnq}H

¯

ď Cph2 ` ∆tq,

where the constant C ą 0 depends on the domain D, terminal time T , and norms of the exact
solution u, v, but is independent of h, ∆t, or n.

The proof of Theorem 4.2 is postponed in Section 4.2.

4.1. Proof of the convergence Theorem 4.1. Let au
h, a

v
h : Vh ˆ Vh Ñ R be bilinear forms

defined as
au

hpu, ϕhq :“
`

u, ϕh

˘

h
` ∆t du

`

∇u, ∇ϕh

˘

h
, av

hpv, ψhq :“
`

v, ψh

˘

h
` ∆t dv

`

∇v, ∇ψh

˘

h
,

and the associated linear functionals:
ℓuhpϕhq :“

`

un
h, ϕh

˘

h
` ∆t

`

´un
hpvn

hq2 ` F p1 ´ un
hq, ϕh

˘

h
,

ℓvhpψhq :“
`

vn
h , ψh

˘

h
` ∆t

`

un
hpvn

hq2 ´ pF ` kqvn
h , ψh

˘

h
.

Then the variational formulation of the fully discrete problem reads:
Find un`1

h , vn`1
h P Vh such that

au
hpun`1

h , ϕhq “ ℓuhpϕhq, @ϕh P Vh,(4.1)
av

hpvn`1
h , ψhq “ ℓvhpψhq, @ψh P Vh.(4.2)

Lemma 4.3. For n “ 0, . . . , N ´ 1, the variational problem (4.1) (resp. (4.2)) admits a unique
solution un`1

h P Vh (resp. vn`1
h P Vh).

Proof. We verify the conditions of the Lax–Milgram theorem:
Coercivity. For all u P Vh, we have

au
hpu, uq “ }u}2

L2 ` ∆t du

`

∇u, ∇u
˘

ě }u}2
V.

Thus, au
hpu, uq ě α}u}2

V with α “ 1. The same holds for av
h.

Continuity. We have
|au

hpu, ϕq| ď C}u}H}ϕ}H,

for some constant C ą 0. Again the same applies to av
h.

Boundedness of linear forms ℓuh and ℓvh. We estimate

ℓuhpϕhq ď

´

}un
h}L2 ` ∆t }un

hpvn
hq2}L2 ` ∆t F p1 ` }un

h}L2q

¯

}ϕh}L2 .

The same holds for ℓvh. Thus, ℓuh and ℓvh are bounded linear functionals on Vh.
The conditions of the Lax–Milgram theorem are satisfied. Thus, there exist a unique solution

un`1
h (resp. vn`1

h ) in Vh to (4.1) (resp. (4.2)), as claimed by the lemma. □
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Lemma 4.4. Let n P t0, . . . , N ´ 1u. Assume that 0 ď un
h ď 1 and 0 ď vn

h ď vmax a.e. in D.
Then, it holds for a.e. in D that

0 ď un`1
h ď 1, 0 ď vn`1

h ď vmax.

Proof. We fix n P t0, . . . , N ´ 1u and assume that 0 ď un
h ď 1 and 0 ď vn

h ď vmax a.e. in D. We
proceed with a Stampacchia truncation applied to both un

h and vn
h .

Non-negativity. Let un`1,´
h :“ mint0, un`1

h u P Vh and vn`1,´
h :“ mint0, vn`1

h u P Vh. We take
ϕh “ un`1,´

h in (4.1) and ψh “ vn`1,´
h in (4.2). By symmetry and coercivity of au

h and av
h, we have

0 ď au
hpun`1,´

h , un`1,´
h q “ au

hpun`1
h , un`1,´

h q “ ℓuhpun
h,u

n`1,´
h q,(4.3)

0 ď av
hpvn`1,´

h , vn`1,´
h q “ av

hpvn`1
h , vn`1,´

h q “ ℓvhpvn
h ,v

n`1,´
h q.(4.4)

The right-hand side of (4.3) (resp. (4.4)) are non-positive when un
h “ 0 (resp. vn

h “ 0). That is
a consequence of the quasi-positivity of the reaction terms. Meanwhile, the left-hand sides are
non-negative. Necessarily, }un`1,´

h }L2 “ }vn`1,´
h }L2 “ 0, so, un`1

h , vn`1
h ě 0 a.e. in D.

Upper bound. For all x P R, we denote x` :“ maxt0, xu. Let yh :“ pun`1
h ´ 1q` P Vh and

zh :“ pvn`1
h ´ vmaxq` P Vh. We take ϕh “ yh in (4.1) and ψh “ zh in (4.2). Again, by symmetry

and coercivity, it follows that

}yh}L2p}yh}L2 ´ 1q ď au
hpun`1

h , yhq “ ℓuhpun
h,yhq,(4.5)

}zh}L2p}zh}L2 ´ vmaxq ď av
hpvn`1

h , zhq “ ℓvhpvn
h ,zhq.(4.6)

The right-hand side of (4.5) (resp. (4.6)) are non-positive when un
h “ 1 (resp. vn

h “ 0). That
implies }yh}L2 “ 0 (resp. }zh}L2 “ 0), so un`1

h ď 1 (resp. vn`1
h ď vmax) a.e. in D. That concludes

the proof of the lemma. □

Lemma 4.5. For all N P N, it holds that

max
0ďnďN

´

}un
h}2

L2 ` }vn
h}2

L2

¯

` ∆t
N
ÿ

n“1

´

du}un
h}2

H1 ` dv}vn
h}2

H1

¯

ď C,

N
ÿ

n“1

´

}un
h ´ un´1

h }2
L2 ` }vn

h ´ vn´1
h }2

L2

¯

ď C,

with C :“ pD,F, vmax, T q ą 0.

Proof. We take ϕh “ 2un`1
h in (3.1) and ψh “ 2vn`1

h in (3.2); and use the identity pa ´ bq2b “

a2 ´ b2 ` pa´ bq2. Then, using Lemma 4.4, and the Cauchy-Schwarz and Young inequalities
`

´un
hpvn

hq2 ` F p1 ´ un
hq, 2un`1

h

˘

ď C ` }un`1
h }2

L2 ,
`

un
hpvn

hq2 ´ pF ` kqvn
h , 2vn`1

h

˘

ď C ` }vn`1
h }2

L2 ,

with C :“ CpD, vmaxq ą 0. After these calculations, we arrive at

}un`1
h }2

L2 ´ }un
h}2

L2`}un`1
h ´ un

h}2
L2 ` ∆t du}un`1

h }2
H1 ď ∆tC ` ∆t}un`1

h }2
L2 ,

}vn`1
h }2

L2 ´ }vn
h}2

L2 `}vn`1
h ´ vn

h}2
L2 ` ∆t dv}vn`1

h }2
H1 ď ∆tC ` ∆t}vn`1

h }2
L2 .

Summing for n “ 0, . . . , N ´ 1,

}uN
h }2

L2`

N
ÿ

n“1
}un

h ´ un´1
h }2

L2 ` ∆t du

N
ÿ

n“1
}un

h}2
H1 ď }u0

h}2
L2`TC ` ∆t

N
ÿ

n“1
}un

h}2
L2 ,

}vN
h }2

L2 `

N
ÿ

n“1
}vn

h ´ vn´1
h }2

L2 ` ∆t dv

N
ÿ

n“1
}vn

h}2
H1 ď }v0

h}2
L2 `TC ` ∆t

N
ÿ

n“1
}vn

h}2
L2 .
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By the Gronwall inequality,

}uN
h }2

L2`

N
ÿ

n“1
}un

h ´ un´1
h }2

L2 ` ∆t du

N
ÿ

n“1
}un

h}2
H1 ď C,

}vN
h }2

L2 `

N
ÿ

n“1
}vn

h ´ vn´1
h }2

L2 ` ∆t dv

N
ÿ

n“1
}vn

h}2
H1 ď C,

with C :“ CpD,F, vmax, T q ą 0.
This concludes the proof of the lemma. □

Proof of Theorem 4.1. Since u∆t
h , v∆t

h are defined by linear interpolation in time between un
h, v

n
h P

Vh, and by the discrete energy estimate in Lemma 4.5, we have that Btu
∆t
h , Btv

∆t
h P L2p0, T ;Hhq.

By Aubin–Lions lemma; there exists a subsequence; which we still denote by u∆t
h , v∆t

h ; and limits
u, v P L2p0, T ;Hq; such that

u∆t
h , v∆t

h Ñ u, v strongly in L2p0, T ;Hq,(4.7)

u∆t
h , v∆t

h á u, v weakly in L2p0, T ;Vq,(4.8)

Btu
∆t
h , Btv

∆t
h á Btu, Btv weakly in L2p0, T ;Hq.(4.9)

By interpolation of the discrete problems (3.1) and (3.2) over time, the interpolants u∆t
h and

v∆t
h satisfy also

ż T

0

`

Btu
∆t
h psq, ϕh

˘

h
`du

`

∇u∆t
h psq, ∇ϕh

˘

h
ds “

ż T

0

`

´u∆t
h psqpv∆t

h q2psq ` F p1 ´ u∆t
h psqq, ϕh

˘

h
ds,

ż T

0

`

Btv
∆t
h psq, ψh

˘

h
`dv

`

∇v∆t
h psq,∇ψh

˘

h
ds “

ż T

0

`

u∆t
h psqpv∆t

h q2psq ´ pF ` kqv∆t
h psq, ψh

˘

h
ds.

To pass to the limit in the nonlinear terms, we use the identity

u∆t
h pv∆t

h q2 ´ uv2 “ pu∆t
h ´ uqpv∆t

h q2 ` uppv∆t
h q2 ´ v2q,

and apply Hölder inequality to get
›

›u∆t
h pv∆t

h q2 ´ uv2›

›

L1p0,T ;L1q
ď

›

›u∆t
h

›

›

L2p0,T ;L2q

›

›pv∆t
h q2 ´ v2›

›

L2p0,T ;L2q

`
›

›v2}L2p0,T ;L2q

›

›u∆t
h ´ u

›

›

L2p0,T ;L2q
.

By (4.7), both terms on the right-hand side tend to 0 when h,∆t Ñ 0, thus

u∆t
h pv∆t

h q2 Ñ uv2 strongly in L1p0, T ;L1pDqq.

Finally, passing to the limit in the weak formulation, we obtain
ż T

0

`

Btupsq, ϕ
˘

` du

`

∇upsq, ∇ϕ
˘

ds “

ż T

0

`

´upsqv2psq ` F p1 ´ upsqq, ϕ
˘

ds,
ż T

0

`

Btvpsq, ψ
˘

` dv

`

∇vpsq, ∇ψ
˘

ds “

ż T

0

`

upsqv2psq ´ pF ` kqvpsq, ψ
˘

ds,

for all test functions ϕ, ψ P V.
Hence, pu, vq is the unique weak solution of the Gray–Scott system.
This completes the proof of Theorem 4.1. □

4.2. Proof of the error estimate Theorem 4.2. In this section, we derive an a priori error
estimate for the proposed Algorithm 3.1, under the assumption that the exact solution is sufficiently
regular.

To establish error estimates, we compare the exact solution with its discrete approximation at
the level of their weak formulations. Specifically, we test the continuous weak form (2.1)-(2.2)
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against discrete functions in Vh and subtract the finite volume scheme (3.1)-(3.2), which give
AIhuptn`1q ´ Ihuptnq

∆t , ϕh

E

` du

`

∇Ihuptn`1q,∇ϕh

˘

“
`

´ Ihpuv2qptnq ` F p1 ´ Ihuptnqq, ϕh

˘

`Rn
hpϕhq,

AIhvptn`1q ´ Ihvptnq

∆t , ψh

E

` dv

`

∇Ihvptn`1q,∇ψh

˘

“
`

Ihpuv2qptnq ´ pF ` kqIhvptnq, ψh

˘

`Qn
hpψhq.

This procedure isolates the consistency error, which appears as residual terms

Rn
hpϕhq :“

´uptn`1q ´ uptnq

∆t , ϕh

¯

h
` du

`

∇uptn`1q,∇ϕh

˘

h
´

`

´uptnqv2ptnq ` F p1 ´ uptnqq, ϕh

˘

h
,

Qn
hpψhq :“

´vptn`1q ´ vptnq

∆t , ψh

¯

h
` dv

`

∇vptn`1q, ∇ψh

˘

h
´

`

uptnqv2ptnq ´ pF ` kqvptnq, ψh

˘

h
.

As a very first step in the proof, we show that both terms remain small.

Lemma 4.6. Assume that the hypotheses of Theorem 4.2 hold. Then, the residuals satisfy

max
0ďnďN

´

}Rn
hpϕhq}H´1 ` }Qn

hpψhq}H´1

¯

ď Cph2 ` ∆tq, @ϕh, ψh P Vh,

where C ą 0 is a constant that depends on the norms of u, v, but independent on the scheme.

Proof. We give the proof for Rn
h; the case of Qn

h follows analogously. Let ϕh P V. To estimate the
action of Rn

h on ϕh, we insert the weak form and subtract it, then bound the dual norm. We split
the residual into 3 terms,

Rn
hpϕhq “ T1 ` T2 ` T3,

with

the time truncation

T1 :“
´uptn`1q ´ uptnq

∆t ´ Btuptn`1q, ϕh

¯

h
`

`

Btuptn`1q, ϕh

˘

h
´

@

Btuptn`1q, ϕh

D

,

the gradient quadrature error

T2 :“ du

`

∇uptn`1q, ∇ϕh

˘

h
´ du

`

∇uptn`1q, ∇ϕh

˘

,

and the nonlinear quadrature error

T3 :“
`

fpuptnq, vptnqq, ϕh

˘

h
´

`

fpuptnq, vptnqq, ϕh

˘

.

Time truncation. Using Taylor expansion,
uptn`1q ´ uptnq

∆t ´ Btuptn`1q “
∆t
2 Bttupξq, for some ξ P ptn, tn`1q,

which gives for the first term
›

›

›

›

uptn`1q ´ uptnq

∆t ´ Btuptn`1q

›

›

›

›

H´1
ď C}Bttu}L8ptn,tn`1;H´1q.

We use Lemma 3.2 on the second term (quadrature error for L2-inner product), which gives
ˇ

ˇ

`

Btuptn`1q, ϕh

˘

h
´

@

Btuptn`1q, ϕh

Dˇ

ˇ ď Ch2›

›Btuptn`1q
›

›

H1}ϕh}H1 .

Thus, the first contribution is
|T1| ď Cp∆t` h2q}ϕh}H1 .

Gradient quadrature error. Since ∇uptn`1q P H1 ˆ H1, and we use midpoint rule (or piecewise
constant projection), by Lemma 3.2, the quadrature error satisfies

ˇ

ˇ

`

∇uptn`1q,∇ϕh

˘

h
´

`

∇uptn`1q,∇ϕh

˘ˇ

ˇ ď Ch2}∇uptn`1q}H1}ϕh}H1 .
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Thus,
|T2| ď Ch2}ϕh}H1 .

Nonlinear quadrature error. The reaction term fpu, vq “ ´uv2 ` F p1 ´ uq P H1 if u, v P H2.
Similarly, by applying Lemma 3.2, we have

ˇ

ˇ

`

fpuptnq, vptnqq, ϕh

˘

h
´

`

fpuptnq, vptnq, ϕh

˘ˇ

ˇ ď Ch2}fpu, vq}H1}ϕh}H1 .

Thus,
|T3| ď Ch2}ϕh}H1 .

Combining the estimates, we arrive at

|Rn
hpϕhq| ď Cp∆t` h2q}ϕh}H1 ,

thus, by definition of the dual norm

}Rn
hpϕhq}H´1 ď Cph2 ` ∆tq,

where C ą 0 is a constant depends on the norms of u, but not on the scheme.
That completes the proof of the lemma. □

Proof of Theorem 4.2. We define the error terms:

δn
h :“ un

h ´ Ihuptnq, ηn
h :“ vn

h ´ Ihvptnq.

We subtract the 2 systems of equations to get
@

δn`1
h ´δn

h , ϕh

D

` ∆t du

`

∇δn`1
h , ∇ϕh

˘

“ ∆t
`

fpuh
h, v

n
hq´fpIhuptnq, Ihvptnqq, ϕh

˘

`Rn
hpϕhq,

@

ηn`1
h ´ηn

h , ψh

D

` ∆t dv

`

∇ηn`1
h ,∇ψh

˘

“ ∆t
`

gpuh
h, v

n
hq´gpIhuptnq, Ihvptnqq, ψh

˘

`Qn
hpψhq,

where we define fpu, vq :“ ´uv2 ` F p1 ´ uq and gpu, vq :“ uv2 ´ pF ` kqv.
We test with ϕh “ 2δn`1

h and ψh “ 2ηn`1
h ; and use the identity pa´ bq2b “ a2 ´ b2 ` pa´ bq2,

}δn`1
h }2

L2 ´ }δn
h}2

L2 ` }δn`1
h ´ δn

h}2
L2 ` ∆t du}∇δn`1

h }2
L2

“ 2∆t
`

fpuh
h, v

n
hq ´ fpIhuptnq, Ihvptnqq, δn`1

h

˘

`Rn
hp2δn`1

h q,

}ηn`1
h }2

L2 ´ }ηn
h}2

L2 ` }ηn`1
h ´ ηn

h}2
L2 ` ∆t dv}∇ηn`1

h }2
L2

“ 2∆t
`

gpuh
h, v

n
hq ´ gpIhuptnq, Ihvptnqq, ηn`1

h

˘

`Qn
hp2ηn`1

h q.

We can write
ˇ

ˇ

`

fpuh
h, v

n
hq´fpIhuptnq, Ihvptnqq, δn`1

h

˘

h

ˇ

ˇ ď C
`

}δn
h}2

L2 ` }ηn
h}2

L2 ` 1
2}δn`1

h }2
L2

˘

,
ˇ

ˇpgpuh
h, v

n
hq´ gpIhuptnq, Ihvptnqq, ηn`1

h

˘

h

ˇ

ˇ ď C
`

}δn
h}2

L2 ` }ηn
h}2

L2 ` 1
2}ηn`1

h }2
L2

˘

.

Next, we apply Cauchy–Schwarz and Young inequalities on the residuals; and use Lemma 4.6,

Rn
hp2δn`1

h q ď 2}Rn
h}H´1}δn`1

h }H1 ď Cph` ∆tq2 ` ε}δn`1
h }2

H1 ,

Qn
hp2ηn`1

h q ď 2}Qn
h}H´1}ηn`1

h }H1 ď Cph` ∆tq2 ` ε}ηn`1
h }2

H1 .

Combining everything, we arrive at

}δn`1
h }2

L2 ´ }δn
h}2

L2 ` ∆t du}∇δn`1
h }2

L2 ď C∆t
`

}δn
h}2

L2 ` }ηn
h}2

L2
˘

` Cph2 ` ∆tq2,

}ηn`1
h }2

L2 ´ }ηn
h}2

L2 ` ∆t dv}∇ηn`1
h }2

L2ď C∆t
`

}δn
h}2

L2 ` }ηn
h}2

L2
˘

` Cph2 ` ∆tq2.

We define En :“ }δn
h}2

L2 ` }ηn
h}2

L2 , and obtain a recurrence

En`1 ď p1 ` C∆tqEn ` Cph2 ` ∆tq2,

which by the discrete Gronwall lemma, provides

max
0ďnďN

´

}un
h ´ uptnq}L2 ` }vn

h ´ vptnq}L2

¯

ď Cph2 ` ∆tq

as claimed by Theorem 4.2. □
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Figure 1. Snapshots of Gray–Scott patterns: Labyrinthine (F “ 0.037, k “

0.060), Moving Spots (F “ 0.014, k “ 0.054), and Pulsating Spots (F “ 0.025,
k “ 0.060). The system starts with u0 “ 1 and v0 “ 0 except in the center, in a
box of size 0.2x0.2, where we prescribe u0 “ 0.5 and v0 “ 0.25. Colormap shows
concentration u.

5. Numerical experiments

In this section, we present numerical simulations that illustrate the effectiveness of the numerical
scheme under consideration and validate the theoretical results on convergence.

We consider the Gray–Scott system on a square domain D “ r0, 1s ˆ r0, 1s. We fix the diffusion
coefficients set to du “ 1.6 ˆ 10´5 and dv “ du{2.

We apply Algorithm 3.1 with a grid spacing h, yielding nx “ ny “ 1{h points per spatial
direction. The implementation of the numerical scheme is based on the finite volume package
FiPy, see [8], and a semi-implicit scheme with a time step ∆t.

Since the Gray–Scott system does not admit a known closed-form solution, direct error evalua-
tion against an exact solution is not possible. To assess the convergence properties of our method,
there are two approaches:

Reference solution approach. We compute a high-fidelity numerical solution on a very fine
spatial mesh with a very small time step, which we treat as the “exact” reference solution for error
estimation. However, the Gray–Scott system is well known for its slow dynamics: patterns emerge
only gradually, and transients can appear very similar at earlier times (e.g., around t “ 100), while
the system typically settles into its characteristic long-term structures only at much later times
(e.g., t ě 2000, see Figure 1). Computing such high-fidelity solutions up to t “ 2000 or beyond is
computationally demanding, which motivates the use of an alternative strategy.
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Manufactured solution approach. We prescribe smooth artificial solutions u and v, and modify
the Gray–Scott equations by adding source terms so that the prescribed functions are exact so-
lutions. This provides a controlled setting in which the numerical error can be measured directly
against the known exact solution.

5.1. Manufactured solution approach. We define the modified equations

(5.1)
#

Btu “ du∆u´ uv2 ` F p1 ´ uq ` Su,

Btv “ dv∆v ` uv2 ´ pF ` kqv ` Sv.

We use the parameters of the Labyrinthine (F “ 0.037, k “ 0.060) and fix a terminal time T “ 10.
The manufactured forcing terms Su, Sv are chosen so that a prescribed pair pu˚, v˚q is an exact
solution to (5.1). In particular,

Su “ Btu
˚´du∆u˚ ` u˚pv˚q2´F p1 ´ u˚q,

Sv “ Btv
˚ ´dv∆v˚ ´ u˚pv˚q2`pF ` kqv˚.

Experiment 1 (trigonometric solution). Let a P p0, 1q, α “ 2π, and ω “ 2π. Define

u˚pt, x, yq “ 1 ´ a cospαxq cospαyq cospwtq, v˚pt, x, yq “
1
4 `

1
4 cospαxq cospαyq cospwtq,

The associated source terms are given by

Supt, x, yq “ aω cospαxq cospαyq sinpωtq ´ 2a du α
2 cospαxq cospαyq cospωtq

´

”

F
`

1 ´ u˚pt, x, yq
˘

´ u˚pt, x, yq
`

v˚pt, x, yq
˘2

ı

,

Svpt, x, yq “ ´ 1
4 ω cospαxq cospαyq sinpωtq ` 1

2 dv α
2 cospαxq cospαyq cospωtq

´

”

´ pF ` kq v˚pt, x, yq ` u˚pt, x, yq
`

v˚pt, x, yq
˘2

ı

.

Experiment 2 (moving tanh interfacek). Let rpx, yq “ cosp2πpx ´ 1{2qq ` cosp2πpy ´ 1{2qq

and a time-dependent radius r0ptq “ r00 `A sinpλtq. For ε ą 0, define

u˚pt, x, yq “
1
2

„

1 ` tanh
ˆ

spt, x, yq

ε

˙ȷ

, v˚pt, x, yq “ 1 ´ u˚pt, x, yq.

With spt, x, yq “ r0ptq ´ rpx, yq. This solution has a moving discontinuity. By decreasing ε, the
interface becomes sharper and approximates a true Heaviside jump while the derivatives (and thus
sources) remain finite.

Define
9r0ptq “ Aλ cospλtq, |∇r|2 “ π2`

sin2pπxq ` sin2pπyq
˘

, ∆r “ ´π2r.

Plugging these into (5.1) gives the associated source terms

Supt, x, yq “
1
2ε sech2psq 9r0ptq

´du

„

´
1
ε2 sech2psq tanhpsq|∇r|2 ´

1
2ε sech2psq∆r

ȷ

´

”

F
`

1 ´ u˚
˘

´u˚pv˚q2
ı

,

Svpt, x, yq “ ´
1
2ε sech2psq 9r0ptq

´dv

„

1
ε2 sech2psq tanhpsq|∇r|2 `

1
2ε sech2psq∆r

ȷ

´

”

´ pF ` kqv˚`u˚pv˚q2
ı

.

The L8pL2q- and L8pL8q-errors are computed and reported in Figure 2. In the convergence
tests, we set ∆t “ h2 (proportional to the cell volume) and gradually refined the mesh, measuring
the error at the discrete times t “ 1, . . . , 10. To assess stability, we fixed h “ 1{128 and considered
increasingly large time steps ∆t “ kh with k “ 1, 2, 4, 16, 32, 64. The results confirm the uncon-
ditional stability of the scheme and verify the convergence rate of order « 1 in the L8pL2q norm
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Figure 2. Stability, convergence, and interface sensitivity tests for Experiments
1 (top row) and 2 (bottom row). The L8pL2q and L8pL8q errors are plotted
against the cell volume h2 (log–log scale), while interface sensitivity is measured
with respect to the prescribed interface thickness ε. Reference slopes are included
for comparison.

predicted by Theorem 4.2. The same rate of convergence is also observed in the L8pL8q norm for
both experiments.

The interface sensitivity, relevant only for Experiment 2, exhibits second-order behavior. This
demonstrates that the method remains robust even in the presence of sharp gradients induced by
the moving interface.

Taken together, these results provide strong numerical evidence that the semi-implicit treatment
of diffusion, combined with the explicit handling of nonlinear reactions, yields a stable and accurate
discretization, fully consistent with the theoretical stability guarantees established in Section 4.

6. Conclusion and Outlook

In this work, we have developed and analyzed a semi-implicit finite volume scheme for the Gray–
Scott reaction-diffusion system. The scheme treats diffusion implicitly and nonlinear reaction terms
explicitly, yielding a robust IMEX formulation that is well-suited for stiff dynamics. We established
unconditional well-posedness of the discrete problem, together with qualitative properties such as
non-negativity and boundedness of the numerical solution. By combining compactness arguments
with weak–strong uniqueness, we proved that the fully discrete solution sequence converges strongly
to a weak solution of the continuous system. Under additional smoothness assumptions, we derived
a priori error estimates in the L2-norm. Numerical experiments confirmed the theoretical results,
illustrating both convergence of the method and the emergence of classical Gray–Scott pattern
types.
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Several directions remain open for future research. An immediate extension is to apply the
present analysis to other reaction-diffusion systems that exhibit rich pattern formation phenomena
similar to the Gray–Scott model. Classical examples include the Schnakenberg system, the Gierer–
Meinhardt activator–inhibitor model, and the FitzHugh–Nagumo system, all of which generate
Turing-type patterns and have been extensively studied in mathematical biology. The analytical
framework developed here, based on compactness arguments and weak–strong uniqueness, can
be adapted to such systems under similar structural conditions on the nonlinearities. Beyond
chemical kinetics, these models also arise in morphogenesis, neuroscience, and materials science,
making them natural candidates for extending the present finite volume analysis.

Overall, the present contribution demonstrates that finite volume schemes offer a mathemat-
ically rigorous and computationally effective tool for simulating the Gray–Scott system. The
combination of provable convergence, error control, and pattern-resolving capability makes them
a promising candidate for future studies in computational mathematics, applied sciences, and
engineering contexts where pattern formation plays a central role.
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