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Abstract

Prospect theory is often used in theory and empirics, yet its axiomatic foundations

are not fully understood. We offer a full axiomatic characterization of prospect the-

ory. The key axiom, rank-independent trade-off consistency, is a rank-independent

generalization of cumulative prospect theory’s rank-dependent key axiom. In addition,

prospect theory only requires within probability tree continuity and monotonicity for

lotteries with the same probability tree capturing frame sensitivity and discontinuous

changes across probability trees, whereas cumulative prospect theory assumes that the

preferences are not affected by the probability tree.

1 Introduction

Prospect theory has been an immensely influential model for choice under risk. However,

its axiomatic foundations are not well-understood. In this paper, we offer an axiomati-

zation for prospect theory under risk. This provides a prospect theory counterpart for the

axiomatization of cumulative prospect theory under risk in Chateauneuf and Wakker (1999).

Prospect theory (Kahneman and Tversky, 1979)1 extends the expected utility by a prob-

ability weighting function. Formally, prospect theory uses a probability weighting function

w : [0, 1] → R+ with w(0) = 0 and w(1) = 1 and a utility function u to evaluate lotteries P

by ∑
x

w
(
P (x)

)
u(x)

where P (x) is the probability of prize x in the lottery P . Here, the outcomes x are monetary

gains or losses relative to a reference point. This model was originally introduced by Preston

and Baratta (1948), Edwards (1954), and Handa (1977).
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1Following the extension to simple lotteries by Camerer and Ho (1994) and Fennema and Wakker (1996).
This is also known as the separable prospect theory or prospect theory on positive and negative prizes
(Wakker, 2010; Wakker, 2022).
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We show that the main behavioral axiom for prospect theory is a stronger version of the

main behavioral axiom for cumulative prospect theory in Chateauneuf and Wakker (1999).

This axiom of trade-off consistency captures that the decision maker evaluates the value of

trading off one of the prizes of the lottery for another prize consistently and independently

of the probability of the prize and independently of the other prizes. In contrast, cumulative

prospect theory assumes a restricted version of this axiom when the evaluation of the trade-

off might depend on the rank of the prizes in the lottery.

As a second difference, we show that prospect theory only requires within probability

tree continuity and monotonicity for lotteries with the same probability tree. This captures

frame sensitivity and discontinuous changes in evaluations across probability trees. Instead,

cumulative prospect theory assumes that the preferences are not affected by the probability

tree of the lottery.

Related literature. Recently, there has been a discussion (Bernheim and Sprenger,

2020; 2023, Abdellaoui et al., 2020) on testing and comparing prospect theory and cumulative

prospect theory. Our foundations for prospect theory clarify this discussion by formalizing

the axiomatic difference between these two models. We show that the axiomatic difference

between these models is rank-independent trade-off consistency of prospect theory compared

to the first-order stochastic dominance and continuity across probability trees of cumulative

prospect theory.

Cumulative prospect theory has several characterizations in Luce and Fishburn (1991),

Tversky and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf and Wakker

(1999), Köbberling and Wakker (2003), Kothiyal et al. (2011), Schmidt and Zank (2012),

Bastianello et al. (2023). However, the only characterization for prospect theory is a partial

characterization in Kahneman and Tversky (1979) and an axiomatization for a linear utility

in Handa (1977).2 In here, we complete this characterization for a full characterization of

prospect theory.

The theoretical literature on prospect theory has noted that it often violates first-order

stochastic dominance (Fishburn, 1978). Hence, some authors have deemed it as unsuitable

for theoretical analyses (Wakker, 2010, p. 275). However, prospect theory is often used in
2Handa’s characterization crucially depends on linear utility, and it does not extend to non-linear utility.
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empirical and theoretical applications, such as recently in Bernheim and Sprenger (2020),

Blake et al. (2021), De Giorgi et al. (2007), Grishina et al. (2017), Harrison and Rutström

(2009), Harrison et al. (2007), Hey et al. (2010), Schweitzer and Cachon (2000), Rieger (2014),

Smith et al. (2009), and Wibbenmeyer et al. (2013). Our axiomatization of the prospect

theory provides theoretical foundations for these empirical and theoretical applications.

Prospect theory is closely related to the subjectively weighted expected utility (Kar-

markar, 1978; 1979). However, in contrast to this model, prospect theory does not normal-

ize the weights to sum to 1.3 This model does not have an axiomatization. Additionally,

prospect theory is related to weighted expected utility (Chew and MacCrimmon, 1979; Chew,

1983; 1989; Hazen, 1987; Karni and Zhou, 2021). However, this model applies an additional

weighting function to the outcomes and normalizes the weights to sum to 1.4

Organization of the paper. Section 2.1 introduces the notation and definitions. Sec-

tion 2.2 introduces the axioms characterizing prospect theory and states the result of the

paper. Section 2.3 compares the axioms of prospect theory to cumulative prospect theory.

Section 2.4 sketches the proof. Section 3 concludes. The proof of the characterization is in

the Appendix.

2 Characterization

2.1 Preliminaries

We consider a standard setting in choice under risk with monetary prizes without compound

lotteries. The prizes are monetary prizes on an open interval around 0, X = (m∗, m∗) where

m∗, m∗ ∈ R ∪ {∞, −∞} and m∗ < 0 < m∗. The set of (simple) lotteries on X is denoted by

∆(X). We consider preferences ≿ over lotteries P ∈ ∆(X). supp P denotes the support of

the lottery P .5 We endow the set of lotteries ∆(X) with the topology of weak convergence.6

We define mixtures of lotteries prizewise which assumes that compound lotteries are
3Formally, the subjectively weighted expected utility uses utility u and weighting function for probabilities

w such that the value of lottery P is
∑

x
w(P (x))u(x)∑

y
w(P (y))

.

4Formally, the weighted expected utility uses utility u and weighting function for outcomes w such that
the value of lottery P is

∑
x

P (x)w(x)u(x)∑
y

P (y)w(y)
.

5For simple lotteries, supp P = {x ∈ X|P (x) > 0}.
6For simple lotteries, weak convergence simplifies to the convergence of cumulative distribution functions

outside the support of the limit lottery: A sequence of lotteries (Pn)∞
n=1 ⊆ ∆(X) converges weakly to
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reduced to single-stage lotteries: Define for all α ∈ [0, 1], P, Q ∈ ∆(X), and x ∈ X,(
αP + (1 − α)Q

)
(x) = αP (x) + (1 − α)Q(x).

Our approach is to focus only on comparing lotteries with the same induced probability

tree over outcomes. Formally:

Definition Lotteries P and Q have the same induced probability tree if there exist p ∈ ∆(N)

and (xi)i∈supp p, (yi)i∈supp p ∈Xsupp p such that for all i ̸=j, xi ̸=xj and yi ̸=yj, P =∑
i∈supp p piδxi

,

and Q = ∑
i∈supp p piδyi

.

In this definition, the probability trees of the lotteries are only compared based on the

observable probabilities for each outcome. That is, after the reduction of compound lotteries

and coalescing common prizes.

2.2 Prospect Theory

We characterize prospect theory by the following six axioms. Our first four assumptions are

standard or technical continuity assumptions. The first two assumptions are that preferences

are complete, transitive, and monotone in increasing prizes within the induced probability

tree. This weaker notion of monotonicity is the first difference to cumulative prospect theory

that satisfies monotonicity in first-order stochastic dominance.

Axiom 1 (Weak Order) ≿ is complete and transitive.

Axiom 2 (Single Prize Monotonicity) For all lotteries P , x, y ̸∈ supp P with x > y and

α ∈ (0, 1),

αP + (1 − α)δx ≻ αP + (1 − α)δy.

The next two axioms are technical continuity axioms in prizes and in probabilities. First,

we assume continuity in prizes when the probabilities of the prizes are unchanged. That is

when the induced probability trees of the lotteries are the same.7

P ∈ ∆(X) if for all a ∈ R with a /∈ supp P ,∑
x∈supp Pn

x≤a

Pn(x) →
∑

x∈supp P
x≤a

P (x) as n → ∞.

7Convergence for lotteries with the same induced probability tree is the same as prizewise convergence:
If lotteries (Pn)∞

n=1, and P have the same induced probability tree p ∈ ∆(N), then Pn converges weakly to
P as n → ∞ iff for each n ∈ N, there exist (xn

i )i∈supp p, (xi)i∈supp p ∈ Xsupp p such that P n =
∑

i∈supp p piδxn
i
,

P =
∑

i∈supp p piδxi
, and for all i ∈ supp p, xn

i → xi as n → ∞ in the Euclidean distance.
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Axiom 3 (Within Tree Continuity in Prizes) For all lotteries (Pn)∞
n=1, P, and Q such

that for all n ∈N, Pn and P have the same induced probability tree and Pn converges weakly

to P as n → ∞,

if Pn ≿ Q for all n ∈ N, then P ≿ Q and if Q ≿ Pn for all n ∈ N, then Q ≿ P.

The next axiom is continuity in the probabilities when the prizes are unchanged. This is

the standard mixture continuity.

Axiom 4 (Mixture Continuity) For all lotteries P, Q, R, the sets{
α ∈ [0, 1]

∣∣∣αP + (1 − α)Q ≿ R
}

and
{
α ∈ [0, 1]

∣∣∣R ≿ αP + (1 − α)Q
}

are closed.

The next axiom is the main axiom of the representation. It is a stronger version of the

trade-off consistency axiom from Chateauneuf and Wakker (1999) when we apply the axiom

to all the lotteries and not only lotteries that have the same induced probability tree and

rank prizes of the lotteries in the same order. The interpretation of this axiom is that the

decision-maker ranks utility differences between prizes consistently and independently of the

other prizes or of the probabilities. In contrast, the weaker version from Chateauneuf and

Wakker (1999) allows the rank of a utility difference to depend on the rank of the prize.8

Axiom 5 (Rank-Independent Trade-Off Consistency) For all lotteries P, Q, R, S,

α, β ∈ (0, 1), a, c /∈ supp P ∪ supp R, and b, d /∈ supp Q ∪ supp S, if

αδa + (1 − α)P ≿ αδb + (1 − α)Q, αδd + (1 − α)Q ≿ αδc + (1 − α)P,

and βδc + (1 − β)R ≿ βδd + (1 − β)S,

then βδa + (1 − β)R ≿ βδb + (1 − β)S.

The idea of the axiom is to capture utility differences between the prizes. Assume that

we have additively separable utility across the prizes. From the first two preferences, we can

infer that trading b for a compensates for trading Q for P . Whereas trading d for c does

not compensate for trading Q for P . Hence, the utility difference between a and b is larger

than the utility difference between c and d. So as in the third preference, if trading d for c

compensates for trading S for R, then we must have that also trading b for a compensates
8This axiom was initially introduced in Wakker (1984) in choice under uncertainty for subjective expected

utility.
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for trading S for R, as is assumed in the last preference.

The last axiom captures that the outcomes are gains and losses with respect to a reference

level 0.

Axiom 6 (Gain-Loss Monotonicity) For all lotteries P ∈ ∆(X), if for all x ∈ supp P ,

x > 0, then P ≻ δ0 and if for all x ∈ supp P , x < 0, then δ0 ≻ P .

Our main result is that these six axioms characterize prospect theory.

Theorem 1 (Prospect Theory) ≿ satisfies Axioms 1-6 iff there exist a continuous and

strictly increasing u : X → R with u(0) = 0 and a continuous probability weighting function

w : [0, 1] → R+ with w(0) = 0 and w(1) = 1 such that

P ≿ Q ⇐⇒
∑

x∈supp P

w
(
P (x)

)
u(x) ≥

∑
x∈supp Q

w
(
Q(x)

)
u(x).

This characterization clarifies the axiomatic foundations of prospect theory. We discuss

this result more in the next section and the role of Axioms 5 and 6 in our proof sketch in

Section 2.4.

2.3 Comparison to Cumulative Prospect Theory

The difference between prospect theory (PT) and cumulative prospect theory (CPT) (Cha-

teauneuf and Wakker, 1999) is that CPT trades off monotonicity and continuity for rank-

dependent evaluation of prizes in trade-off consistency. First, CPT strengthens Axiom 2 to

apply for all prizes x, y and not only prizes that are not a part of the lottery P , as is assumed

in PT. Second, CPT strengthens Axiom 3 to apply for all limit lotteries P and not only limit

lotteries P that have the same induced probability tree as each Pn, as PT assumes. These

two differences highlight the view in PT that the preferences are affected by the induced

probability tree. PT views the induced probability tree as a frame for evaluating the lot-

teries, and lotteries are evaluated consistently, monotonically and continuously, within the

same frame. However, continuous changes in the prizes that change the induced probability

can create discontinuous changes in preferences. In contrast, CPT assumes that the induced

probability tree does not affect the preferences.

The third difference is that CPT assumes a weaker version of Axiom 5. CPT weakens this

axiom in three ways. First, it is assumed that P and Q have the same induced probability

tree and they rank the branches in the same order. Formally, there exist p∈∆(N) (xi)i∈supp p,
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(yi)i∈supp p ∈ Xsupp p such that if i < j, then xi > xj and yi > yj, and P = ∑
i∈supp p piδxi

,

and Q = ∑
i∈supp p piδyi

. Second, it is assumed that a, b, c, d have the same rank as outcomes

of P and Q: Formally, for each θ ∈ {a, b, c, d}, for all i ∈ supp p, θ ≥ xi iff θ ≥ yi. Third,

it is assumed that a, b, c, d are all negative or are all positive. Finally, the first and second

properties are also assumed to hold for R, S and a, b, c, d.

First, PT allows for comparisons of P and Q that have different induced probability

trees.9 This assumes that if two lotteries share a common prize with a common probability,

then changing this common prize to another common prize does not affect the comparison

between them.10 Second, PT allows for comparisons of prizes with different ranks for a rank-

independent weighting function. This is the well-known difference between the models and

this assumption was tested recently by Bernheim and Sprenger (2020). Third, PT allows for

comparisons of prizes that are losses and gains for a sign-independent weighting function. It

is a simple extension of PT to extend it for sign-dependent weighting function by applying

the trade-off consistency separately for gains and losses, as in Chateauneuf and Wakker

(1999).

2.4 Proof Sketch

The proof follows in three steps. The first part of the proof offers a representation for more

general preferences by relaxing Axioms 5 and 6 by the branch cancellation axiom: For two

lotteries P, Q, if x, y ̸∈ supp P ∪ supp Q and α ∈ (0, 1), then

αP + (1 − α)δx ≿ αQ + (1 − α)δx ⇐⇒ αP + (1 − α)δy ≿ αQ + (1 − α)δy.

We show these preferences are represented by u : [0, 1] × X → R with u(p, 0) = 0 for all p

and c : ∆(X) → R that only depends on the induced probability tree such that the value

of lottery P is ∑
x∈supp P u(P (x), x) + C(P ). Here, the branch cancellation axiom is similar

to the separability axiom for additive representations (Debreu, 1960) and to the weak c-

independence axiom in Maccheroni et al. (2006) that gives a similar variational component
9This assumption is crucial since it assumes that utility changes are evaluated similarly across different

induced probability trees. Otherwise, our axioms are compatible with a model where the value of lottery P
is α(P )[

∑
x∈supp P w

(
P (x)

)
u(x)] where the function α depends only on the induced probability tree of P .

10Formally, for two lotteries P, Q, if x, y ̸∈ supp P ∪ supp Q and α ∈ (0, 1), then
αP + (1 − α)δx ≿ αQ + (1 − α)δx ⇐⇒ αP + (1 − α)δy ≿ αQ + (1 − α)δy.
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to the representation.

The second step strengthens the branch cancellation axiom with Axiom 5. Then this

corresponds to separating the probability and utility of outcomes for a representation by

u : X → R with u(0) = 0, w : [0, 1] → R+, and c : ∆(X) → R that only depends on the

induced probability tree such that the value of lottery P is ∑
x∈supp P w(P (x))u(x) + C(P ).

This follows symmetrically to Wakker (1984).

The third step adds Axiom 6 and shows that this gets rid of the additive term since it is

not compatible with the normalization of u(0) = 0 and continuity of prizes around 0. This

gives us the final prospect theory representation.

3 Conclusion

In this paper, we axiomatized prospect theory (PT) under risk. This result provided a

counterpart for Chateauneuf and Wakker (1999). We showed that the main behavioral

axiom of PT is a stronger version of the main behavioral axiom of cumulative prospect

theory (CPT). It is left for future research to axiomatize PT under uncertainty to provide

a counterpart for Wakker and Tversky (1993). It is unclear if the different axiomatizations

of CPT, such as in Wakker and Tversky (1993), Köbberling and Wakker (2003), Kothiyal

et al. (2011), Schmidt and Zank (2012), and Bastianello et al. (2023) can be extended for

an axiomatization of PT similarly as in here. Additionally, our approach can be extended

for axiomatizations of generalizations of CPT and PT, such as CPT-simplicity model and

PT-simplicity model (Fudenberg and Puri, 2022).

Appendix to “An Axiomatization of Prospect Theory”
This appendix shows the proof for Theorem 1. First, Section A.1 starts with definitions

and notations used in the proof. Sections A.2-A.4 show the first step of the proof sketch.

Section A.2 shows that lotteries within an induced probability tree have an additive repre-

sentation with an inseparable utilites and probabilities. Section A.3 shows that we can com-

pare utilities across probability trees with the additive representation locally in a preference

interval. Section A.4 shows that we can extend this local representation into a global one

after adding an additive induced probability tree dependent constant. Finally, Section A.5
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shows the second and third steps of the proof sketch.

A Proofs

A.1 Definitions and notation

We use the following notation. For an induced probability tree, p ∈ ∆(N), denote the off-

diagonal of Xsupp p by

NDiag(Xp) = {x ∈ Xsupp p| ∀ i, j ∈ supp p, i ̸= j, xi ̸= xj}.

For p ∈ ∆4(N), i, j ∈ supp p, x ∈ NDiag(Xp), c ∈ X, we denote replacing the value of x by c

in the coordinate i by (ci, x−i). In a vector, the outermost coordinate denotes the location

of the value in the vector. For example, switching the values of coordinates i and j in x is

denoted by ((xj)i, (xj)i, x−i,j).

We denote the lottery with an induced probability tree p and prizes x ∈ Xsupp p by

(p, x) =
∑

i∈supp p

piδxi
.

We focus on preferences conditional on an induced probability tree p, ≿p. These are

preferences on NDiag(Xp) and are defined by for all x, y ∈ NDiag(Xp),

x ≿p y ⇐⇒ (p, x) ≿ (p, y).

We denote induced probability trees with at least 4 branches by

∆4(N) = {p ∈ ∆(N)||supp p| ≥ 4}.

For each p ∈ ∆4(N), we say that (ui)i∈supp p is an additive representation for ≿p if for

each i ∈ supp p, ui : X → R is a strictly increasing and continuous function such that for all

x, y ∈ NDiag(Xp),

x ≿p y ⇐⇒
∑

i∈supp p

ui(xi) ≥
∑

i∈supp p

ui(yi).

For the first part of the proof, we use the following weaker axiom of branch cancellation

instead of tradeoff consistency.
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Axiom 7 (Branch Cancellation) For two lotteries P, Q, if x, y ̸∈ supp P ∪ supp Q and

α ∈ (0, 1), then

αP + (1 − α)δx ≿ αQ + (1 − α)δx ⇐⇒ αP + (1 − α)δy ≿ αQ + (1 − α)δy.

A.2 Same Utility Across Induced Probability Trees

By Mononen (2024), we have the following result for an additive representation within each

induced probability tree.

Proposition 2 Assume that ≿ satisfies Axioms 1-4 and 7. Then for each p ∈ ∆4(N), there

exists (up(pi, ·))i∈supp p that is an additive representation for ≿p.

In the next two lemmas, we show that for all p, q∈∆4(N), if pi=qj, then up(pi, ·)=up(qi, ·).

Lemma 3 Assume that ≿ satisfies Axioms 1-4 and 7 and for each p ∈ ∆4(N), ≿p has an

additive representation by (up(pi, ·))i∈supp p. If p, q ∈ ∆4(N) and i, j ∈ supp p∩supp q are such

that pi = qi and pj = qj, then there exist η > 0, β1, β2 ∈ R such that ηup(pi, ·) + β1 = uq(qi, ·)

and ηup(pj, ·) + β2 = uq(qj, ·).

Proof. For all α ∈ [0, 1], we denote qαp = αq + (1 − α)p. Denote

A =
{
α ∈ [0, 1]

∣∣∣ ∃ η > 0, β1, β2 ∈ R, ηup(pi, ·) + β1 = uqαp(pi, ·), ηup(pj, ·) + β2 = uqαp(pj, ·)
}
.

We show that A = [0, 1]. 0 ∈ A. First, we show that if α0 ∈ A ∩ [0, 1), then there exist ε > 0

such that for all α1 ∈ (α0, α0 +ε), α1 ∈ A. Let k ∈ supp(qα0p)\{i, j}. Let x ∈ NDiag(Xp∪q).11

Let x1
k, x2

k ∈ X be such that x1
k < xk < x2

k and for all x̃k ∈ [x1
k, x2

k], (x̃k, x−k) ∈ NDiag(Xp∪q).

By Axiom 2,
(
qα0p, (x2

k, x−k)
)

≻ (qα0p, x) ≻
(
qα0p, (x1

k, x−k)
)
. By Axiom 4, there exist ε > 0

such that for all α1 ∈ (α0, α0 + ε),
(
qα0p, (x2

k, x−k)
)

≻ (qα1p, x) ≻
(
qα0p, (x1

k, x−k)
)
. Let

α1 ∈ (α0, α0 +ε). By Axiom 3, there exist x̃k ∈ [x1
k, x2

k] such that
(
qα0p, (x̃k, x−k)

)
∼ (qα1p, x).

Denote Y = X \ ({xk|k ∈ supp p ∪ q} ∪ {x̃k}) and Z = {(x, y) ∈ Y × Y |x ̸= y}. Now

(cl Z) ∩ X = X. Let (ci, dj), (c̃i, d̃j) ∈ Z. By Axiom 7, we have(
qα0p, (ci, dj, x̃k, x−i,j,k)

)
∼

(
qα1p, (ci, dj, x−i,j)

)
,
(
qα0p, (c̃i, d̃j, x̃k, x−i,j,k)

)
∼

(
qα1p, (c̃i, d̃j, x−i,j)

)
.

11This denotes {x ∈ Xsupp p∪supp q| ∀ i, j ∈ supp p ∪ supp q, i ̸= j, xi ̸= xj}
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Thus by the additive representation, we have

uqα0p(pi, ci) + uqα0p(pj, dj) ≥ uqα0p(pi, c̃i) + uqα0p(pj, d̃j)

⇐⇒ uqα1p(pi, ci) + uqα1p(pj, dj) ≥ uqα1p(pi, c̃i) + uqα1p(pj, d̃j).

By the continuity of uqα0p and uqα1p and (cl Z) ∩ X = X, we have for all (ci, dj), (c̃i, d̃j) ∈ X2

uqα0p(pi, ci) + uqα0p(pj, dj) ≥ uqα0p(pi, c̃i) + uqα0p(pj, d̃j)

⇐⇒ uqα1p(pi, ci) + uqα1p(pj, dj) ≥ uqα1p(pi, c̃i) + uqα1p(pj, d̃j).

Define the order ⊵ on X2 by for all (ci, dj), (c̃i, d̃j) ∈ X2

(ci, dj) ⊵ (c̃i, d̃j) ⇐⇒ uqα0p(pi, ci) + uqα0p(pj, dj) ≥ uqα0p(pi, c̃i) + uqα0p(pj, d̃j).

Now
(
uqα0p(pi, ·), uqα0p(pj, ·)

)
and

(
uqα1p(pi, ·), uqα1p(pj, ·)

)
are additive continuous repre-

sentations for ⊵. Thus by the uniqueness of an additive representation (Krantz et al., 1971),

there exist η > 0, β1, β2 ∈ R such that

ηuqα0p(pi, ·) + β1 = uqα1p(pi, ·) and ηuqα0p(pi, ·) + β2 = uqα1p(pi, ·).

Next, assume that there exists (αl)l∈N ⊆ A such that αj → α0. We show that α0 ∈ A.

Assume w.l.o.g. that the sequence (αl)l∈N is decreasing. Let k ∈ supp(qα0p) \ {i, j}. Let

x ∈ NDiag(Xp∪q)). Let x1
k, x2

k ∈ X be such that x1
k < xk < x2

k for all x̃k ∈ [x1
k, x2

k],

(x̃k, x−k) ∈ NDiag(Xp∪q). By Axiom 2,
(
qα0p, (x2

k, x−k)
)

≻ (qα0p, x) ≻
(
qα0p, (x1

k, x−k)
)
. By

Axiom 4, there exist ε > 0 such that for all α1 ∈ (α0, α0 + ε),
(
qα0p, (x2

k, x−k)
)

≻ (qα1p, x) ≻(
qα0p, (x1

k, x−k)
)
. Let l ∈N be such that αl ∈ (α0, α0+ε). By Axiom 3, there exist x̃k ∈ [x1

k, x2
k]

such that
(
α0p, (x̃k, x−k)

)
∼ (qαlp, x). Now the claim α0 ∈ A follows similarly as above.

Next, we show that we can normalize the utility functions in the additive representations

so that the utility functions for the same probabilities are equal across the induced probability

trees.

Proposition 4 Assume that ≿ satisfies Axioms 1-4 and 7. Then there exists u:(0, 1)×X →R

such that for all p ∈ ∆4(N), (u(pi, ·))i∈supp p is an additive representation for ≿p.

Proof. By Proposition 2, for each p ∈ ∆4(N), there exist an additive representation (up(pi, ·))

for ≿p.

By the uniqueness of additive representations (Krantz et al., 1971), we can normalize
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these additive representations as follows. Let x∗ ∈ X be such that 0 < x∗. First, for each

p ∈ ∆4(N) and i ∈ supp p, normalize up(pi, ·) by up(pi, 0) = 0 by an additive transformation.

Second, for each p ∈ ∆4(N) if there exist i ∈ supp p such that pi = 1/4, normalize up(1/4, ·)

by up(pi, x∗) = 1 by a common scaling.

For a < 1/2, let θ(a) ∈ ∆4(N) be such that θ(a)1 = a and θ(a)2 = 1/4. For a ≥ 1/2, let

θ(a) ∈ ∆4(N) be such that θ(a)1 = a. Let p ∈ ∆4(N) be such that for all i ∈ supp p, pi ̸= 1
4 .

Denote i∗ = arg mini∈supp p pi. Now especially pi∗ < 1
2 . Normalize up by a scaling such that

up(pi∗ , x∗) = uθ(a)(a, x∗). For each a ∈ (0, 1), denote u(a, ·) = uθ(a)(a, ·). We show that for

all p ∈ ∆4(N) and i ∈ supp p, up(pi, ·) = u(pi, ·).

First, assume that there exists j ∈ supp p with j ̸= i and pj = 1
4 . Then by Lemma 3 and

the normalization, up(pi, ·) = uθ(pi)(pi, ·) and up(1
4 , ·) = uθ(pi)(1

4 , ·).

Next, assume that pi < 1
2 . Let j ∈ arg min{pl|l ∈ supp p \ {i}} and q ∈ ∆4(N) be such

that qi = pi, qj = pj and there exists k ∈ supp q with k ̸= i, k ̸= j, and qk = 1
4 . q exists

since pj ≤ 1−pi

3 , pi < 1
2 . By the first case, uq(qi, ·) = u(qi, ·) and uq(qj, ·) = u(qj, ·). Now by

the normalization, up(pi, 0) = u(pi, 0), up(pj, 0) = u(pj, 0), and if i ∈ arg min{pl|l ∈ supp p},

up(pi, x∗) = u(pi, x∗) and otherwise up(pj, x∗) = u(pj, x∗). Thus by Lemma 3 for p and q, we

have up(pi, ·) = u(pi, ·) and up(pj, ·) = u(pj, ·).

Finally, assume that pi≥ 1
2 . Let j∈arg min{pl|l∈supp p} and c=min{θ(pi)l|l∈supp θ(pi)}.

Let q ∈∆4(N) be such that q1 =pi, q2 =pj, and q3 =c. By the previous case, uq(pj, ·)=u(pj, ·)

and uq(c, ·) = u(c, ·). By the normalizations, we have up(pj, x∗) = u(pj, x∗), up(pi, 0) =

u(pi, 0) = uq(pi, 0), and up(pj, 0) = u(pj, 0). Thus by Lemma 3, up(pi, ·) = uq(pi, ·) and

up(pj, ·)=uq(pj, ·). Symmetrically, by the normalization and Lemma 3, uθ(pi)(pi, ·)=uq(pi, ·)

and uθ(pi)(pj, ·) = uq(pj, ·). Thus up(pi, ·) = uθ(pi)(pi, ·). This shows the claim.

A.3 Local Additive Representation

In this section, we show that the preferences have locally additive representation. This means

that for a lotteries (p, x) ∼ (q, y), there exist a preference interval P ≻ (p, x) ≻ Q such that

for all x̃ ∈ NDiag(Xp), ỹ ∈ NDiag(Xq),

(p, x̃) ≿ (q, ỹ) ⇐⇒
∑

i∈supp p

u(pi, x̃i) −
∑

i∈supp p

u(pi, xi) ≥
∑

i∈supp q

u(qi, ỹi) −
∑

i∈supp q

u(qi, yi).

This result follows in two steps. The first part shows locally additive representation for
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two induced probability trees that share a common probability and a common preference

range where the two induced probability trees share a common prize with a common prob-

ability at the boundaries of the preference range. The idea of the proof is that we can use

this common probability and the common prizes to measure the length of the preference in-

terval using Axiom 7 in terms of both of the induced probability trees. This proof idea has

been illustrated e.g. in Wakker (1989).

Lemma 5 Assume that ≿ satisfies Axioms 1-4 and 7 and there exists u : (0, 1) × X → R

such that for all p ∈ ∆4(N), (u(pi, ·))i∈supp p is an additive representation for ≿p.

If p, q ∈ ∆4(N), i∗ ∈ supp p, j∗ ∈ supp q, are such that pi∗ = qj∗ and there exist x1, x2, x3 ∈

NDiag(Xp) and y1, y2, y3 ∈ NDiag(Xq) such that (p, x1) ∼ (q, y1), (p, x2) ∼ (q, y2), (p, x3) ∼

(q, y3), (p, x1) ≿ (p, x2) ≿ (p, x3), x1
i∗ = y1

j∗ , and x3
i∗ = y3

j∗ , then for all x ∈ NDiag(Xp), y ∈

NDiag(Xq) such that (p, x1) ≿ (p, x), (q, y) ≿ (p, x3),

(p, x) ≿ (q, y) ⇐⇒
∑

i∈supp p

u(pi, xi) −
∑

i∈supp p

u(pi, x2
i ) ≥

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u(qi, y2
i ).

Proof. By permuting the indices for p and q, we can assume that i∗ = j∗ = 1. First, we

show that we can assume that x1
1 > x3

1: Since X is open there exist x̃1
1, x̃3

1 ∈ X such that

x̃1
1 > max{x1

1, x3
1} ≥ min{x1

1, x3
1} > x̃3

1 and by Axiom 7,(
p, (x̃1

i , x1
−i)

)
∼

(
p, (x̃1

i , y1
−i)

)
≿ (p, x1) ≿ (p, x3) ≿

(
p, (x̃3

i , x3
−i)

)
∼

(
p, (x̃3

i , y3
−i)

)
.

So now we could prove the claim for this larger interval instead. So assume that x1
1 > x3

1.

Assume w.l.o.g. that i as above is 1. Since u is continuous and |supp p| ≥ 4, there exist

x̃1∈NDiag(Xp), ỹ1∈NDiag(Xq) such that x̃1
1=ỹ1

1 =x1
1, for all i∈supp p, j∈supp q, x̃1

i ̸=x3
1 ̸=ỹ1

j ,∑
i∈supp p

u
(
pi, x̃1

i

)
=

∑
i∈supp p

u(pi, x1
i ), and

∑
i∈supp q

u
(
qi, ỹ1

i

)
=

∑
i∈supp q

u(qi, y1
i ). (1)

Now by the additive representations for ≿p and ≿q,

(p, x̃1) ∼ (p, x1) ∼ (q, y1) ∼ (q, ỹ1). (2)

Let n0 ∈ N be the smallest positive integer such that

n0 ≥
∑

i∈supp p\{1} u(pi, x1
i ) −∑

i∈supp p\{1} u(pi, x3
i )(

u(p1, x1
1) − u(p1, x3

1)
) .

We define by induction for each 1 ≤ n ≤ n0, φ(p, n) ∈ NDiag(Xp), φ(q, n) ∈ NDiag(Xq)

such that φ(p, n)1 = φ(q, n)1 = x3
1, for all i ∈ supp p, j ∈ supp q, φ(p, n)i ̸= x1

1, φ(q, n)j ̸= x1
1,
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(
p, φ(p, n)

)
∼ (q, φ(q, n)

)
, and for each 1 ≤ n ≤ n0,

(
p, (x1

1, φ(p, n)−1)
)

∼
(
p, φ(p, n + 1)

)
. By

Axiom 7, we especially have then for each 1 ≤ n ≤ n0,
(
q, (x1

1, φ(q, n)−1)
)

∼
(
q, φ(q, n + 1)

)
.

First, since u is continuous and |supp p| ≥ 4, there exists φ(p, 1) ∈ NDiag(Xp), φ(q, 1) ∈

NDiag(Xq) such that φ(q, 1)1 = φ(p, 1)1 = x3
1, for all i ∈ supp p, j ∈ supp q, φ(p, 1)i ̸= x1

1 ̸=

φ(q, 1)j,∑
i∈supp p

u
(
pi, φ(p, 1)i

)
=

∑
i∈supp p

u(pi, x3
i ), and

∑
i∈supp q

u
(
qi, φ(q, 1)i

)
=

∑
i∈supp q

u(qi, y3
i ). (3)

By the additive representations for ≿p and ≿q,
(
p, φ(p, 1)

)
∼ (p, x3) ∼ (q, y3) ∼

(
q, φ(q, 1)

)
.

If n0 = 1, we are done. So assume that n0 > 1. Let 1 < n ≤ n0 and assume that for each

1 ≤ m < n, φ(p, m), φ(q, m) as above have been defined. By the additive representation for

≿p, we have for each 0 ≤ m < n,∑
i∈supp p

u
(
pi, φ(p, m)i

)
=

∑
i∈supp p\{1}

u
(
pi, φ(p, m − 1)i

)
+ u(p1, x1

1) (4)

=
∑

i∈supp p

u
(
pi, φ(p, m − 1)i

)
+ u(p1, x1

1) − u(p1, x3
1).

Thus by doing the recursion to the first step,∑
i∈supp p

u
(
pi, φ(p, n − 1)i

)
=

∑
i∈supp p

u(pi, x3
i ) + (n − 2)

(
u(p1, x1

1) − u(p1, x3
1)

)
.

By the choice of n0 and since n0 > 1,

(n0 − 1)
(
u(p1, x1

1) − u(p1, x3
1)

)
<

∑
i∈supp p\{1}

u(pi, x1
i ) −

∑
i∈supp p\{1}

u(pi, x3
i ).

Hence,∑
i∈supp p

u
(
pi, (x1

1, φ(p, n − 1)−1)i

)
=

∑
i∈supp p

u
(
pi, φ(p, n − 1)i

)
+ u(p1, x1

1) − u(p1, x3
1) (5)

=
∑

i∈supp p

u(pi, x3
i ) + (n − 2 + 1)

(
u(p1, x1

1) − u(p1, x3
1)

)
≤

∑
i∈supp p

u(pi, x3
i ) + (n0 − 1)

(
u(p1, x1

1) − u(p1, x3
1)

)
<

∑
i∈supp p

u(pi, x3
i ) +

∑
i∈supp p\{1}

u(pi, x1
i ) −

∑
i∈supp p\{1}

u(pi, x3
i )

=
∑

i∈supp p\{1}
u(pi, x1

i ) + u(p1, x3
1) =

∑
i∈supp p

u
(
pi, (x3

1, x1
−1)i

)
.
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Additionally, since φ(p, n − 1)1 = x3
1,∑

i∈supp p

u
(
pi, (x1

1, φ(p, n − 1)−1)i

)
>

∑
i∈supp p

u
(
pi, φ(p, n − 1)i

)
.

Since X is a connected set as an interval, u is continuous, and |supp p| ≥ 4, there exists

φ(p, n) ∈ NDiag(Xp) such that φ(p, n)1 = x3
1, for all i ∈ supp p, φ(p, n)i ̸= x1

1, and∑
i∈supp p

u
(
pi, (x1

1, φ(p, n − 1)−1)i

)
=

∑
i∈supp p

u
(
pi, φ(p, n)i

)
.

Thus by the additive representation for ≿p,
(
p, (x1

1, φ(p, n − 1)−1)
)

∼
(
p, φ(p, n)

)
.

Second, by the induction assumption and Axiom 7, we have(
q, φ(q, n−1)

)
∼

(
p, φ(p, n−1)

)
(6)

⇒
(

q,
(
x1

1, φ(q, n−1)−1
))

∼
(

p,
(
x1

1, φ(p, n−1)−1
))(1,5)

≺
(
p, (x3

1, x̃1
−1)

)(2)∼
(
q, (x3

1, ỹ1
−1)

)
.

By the additive representation and since X is a connected, u is continuous, and |supp q| ≥ 4,

there exists φ(q, n) ∈ NDiag(Xq) such that φ(q, n)1 = x3
1, for all i ∈ supp q, φ(q, n)i ̸= x1

1, and∑
i∈supp q

u
(
qi, (x1

1, φ(q, n − 1)−1)i

)
=

∑
i∈supp q

u
(
qi, φ(q, n)i

)
.

Thus by the additive representation and (6),(
q, φ(q, n)

)
∼

(
q, (x1

1, φ(q, n − 1)−1)
)

∼
(
p, (x1

1, φ(p, n − 1)−1)
)

∼
(
p, φ(p, n)

)
.

This completes the induction.

Finally, let x ∈ NDiag(Xp), y ∈ NDiag(Xq) be such that (p, x1) ≿ (p, x), (q, y) ≿ (p, x3),.

First, we show that

(p, x) ≿ (q, y) ⇐⇒
∑

i∈supp p

u(pi, xi) −
∑

i∈supp p

u(pi, x3
i ) ≥

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u(qi, y3
i ).

By the additive representations, we have∑
i∈supp p

u(pi, x1
i ) ≥

∑
i∈supp p

u(pi, xi) ≥
∑

i∈supp p

u(pi, x3
i )

and
∑

i∈supp q

u(qi, y1
i ) ≥

∑
i∈supp q

u(qi, yi) ≥
∑

i∈supp q

u(qi, y3
i ).

By the definition of n0, there exist 0 ≤ ix, iy ≤ n0 + 1 such that∑
i∈supp p

u(pi, x3
i )+(ix+1)

(
u(p1, x1

1)−u(p1, x3
1)

)
>

∑
i∈supp p

u(pi, xi)≥
∑

i∈supp p

u(pi, x3
i )+ix

(
u(p1, x1

1)−u(p1, x3
1)

)
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and∑
i∈supp q

u(qi, y3
i )+(iy+1)

(
u(p1, x1

1)−u(p1, x3
1)

)
>

∑
i∈supp q

u(qi, yi)≥
∑

i∈supp q

u(qi, y3
i )+iy

(
u(p1, x1

1)−u(p1, x3
1)

)
.

For the case ix = n0 + 1, define φ(p, n0 + 1) = (x1
1, φ(p, n0 + 1)−1), and φ(q, n0 + 1) =

(x1
1, φ(q, n0 + 1)−1).

First, assume that ix ̸= iy. In this case, we have∑
i∈supp p

u(pi, xi) −
∑

i∈supp p

u(pi, x3
i ) ≥

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u(qi, y3
i ) ix ̸=iy

⇐==⇒ ix > iy

⇐⇒
(
p, φ(p, ix)

)
≻

(
p, φ(p, iy)

)
∼

(
q, φ(q, iy)

)
⇐⇒

(
p, φ(p, ix)

)
≻ (q, y) ix ̸=iy

⇐==⇒ (p, x) ≻ (q, y),

where the first equivalency follows from the definition of ix, iy and the assumption that

ix ̸= iy, the second equivalency follows from the additive representation for ≿p, (4), and the

definition of φ with an extension to n0 + 1, the third equivalency follows from the definition

of iy, and the last one from the assumption that ix ̸= iy and the definition of ix.

Next, assume that ix = iy. If ix = n0 + 1, then (p, x) ∼ (p, x1) ∼ (q, y1) ∼ (q, y). So

assume that ix < n0 + 1. By the definitions of ix, iy, φ, and continuity of utility, there exist

zx
1 , zy

1 ∈ [x3
1, x1

1] such that∑
i∈supp p

u(pi, xi) =
∑

i∈supp p

u
(
pi,(zx

1 , φ(p, iy)−1)i

)
=

∑
i∈supp p

u
(
pi,φ(p, iy)i

)
+ u(p1, zx

1 ) − u(p1, x3
1)

and since p1 = q1∑
i∈supp q

u(qi, yi) =
∑

i∈supp q

u
(
qi,(zy

1 , φ(q, iy)−1)i

)
=

∑
i∈supp q

u
(
qi,φ(q, iy)i

)
+ u(p1, zy

1) − u(p1, x3
1).

Thus we have by (4),∑
i∈supp p

u(pi, xi) −
∑

i∈supp p

u(pi, x3
i ) ≥

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u(qi, y3
i )

⇐⇒
∑

i∈supp p

u(pi, x3
i )+(ix−1)

(
u(q1, x1

1)−u(q1, x3
1)

)
+u(p1, zx

1 )−u(p1, x3
1)−

∑
i∈supp p

u(pi, x3
i )

≥
∑

i∈supp q

u(qi, y3
i )+(iy−1)

(
u(q1, x1

1)−u(q1, x3
1)

)
+u(p1, zy

1)−u(p1, x3
1)−

∑
i∈supp q

u(qi, y3
i )

⇐⇒ u(zx
1 ) ≥ u(zy

1) ⇐⇒
∑

i∈supp p

u
(
pi, (zx

1 , φ(p, iy)−1)i

)
≥

∑
i∈supp p

u
(
pi, (zy

1 , φ(p, iy)−1)i

)
⇐⇒

(
p,

(
zx

1 , φ(p, iy)−1
))

≿
(

p,
(
zy

1 , φ(p, iy)−1
))

∼
(

q,
(
zy

1 , φ(q, iy)−1
))

⇐⇒ (p, x)≿(q, y),

where the second to last equivalence follows from the additive representation for ≿p and the
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indifference follows from Axiom 7.

Thus we have for all x∈NDiag(Xp), y∈NDiag(Xq) such that (p, x1)≿(p, x), (q, y)≿(p, x3),

(p, x) ≿ (q, y) ⇐⇒
∑

i∈supp p

u(pi, xi) −
∑

i∈supp p

u(pi, x3
i ) ≥

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u(qi, y3
i ).

Since (p, x2) ∼ (q, y2), by the above and the continuity of utility, we have∑
i∈supp p

u(pi, x2
i ) −

∑
i∈supp p

u(pi, x3
i ) =

∑
i∈supp q

u(qi, y2
i ) −

∑
i∈supp q

u(qi, y3
i )

and so we can add it to the above equivalencies for the claim.

The second part shows the local additive representation. Here, we can use continuity

to create common probabilities and common prizes for any two induced probability trees to

apply the previous lemma. The idea is that if we have two induced probability trees p and

q that have a positive probability on the index 1 and zero probability on the index n. Then

for a small enough εn, we can consider the induced probability trees p, (p1 −εn, p−1, εn), (q1 −

εn, q−1, εn), and q. Here, p and (p1 − εn, p−1, εn) share the probabilities p−1, (p1 − εn, p−1, εn)

and (q1 − εn, q−1, εn) share the probability εn, and similarly for (q1 − εn, q−1, εn) and q. This

gives the additive representation locally by applying the previous lemma multiple times.

Lemma 6 Assume that ≿ satisfies Axioms 1-4 and 7 and there exists u : (0, 1) × X → R

such that for all p ∈ ∆4(N), (u(pi, ·))i∈supp p is an additive representation for ≿p.

If p, q ∈ ∆4(N), x ∈ NDiag(Xp), and y ∈ NDiag(Xq) are such that (p, x) ∼ (q, y), then

there exist P, Q ∈ ∆(X) such that P ≻ (p, x) ≻ Q and for all x̃ ∈ NDiag(Xp), ỹ ∈ NDiag(Xq)

such that P ≿ (p, x̃), (q, ỹ) ≿ Q,

(p, x̃) ≿ (q, ỹ) ⇐⇒
∑

i∈supp p

u(pi, x̃i) −
∑

i∈supp p

u(pi, xi) ≥
∑

i∈supp q

u(qi, ỹi) −
∑

i∈supp q

u(qi, yi).

Proof. Let c ∈ X, ip ∈ supp p, iq ∈ supp q. Since X is open, there exist x1
ip , x2

ip , x3
ip , x4

ip ∈ X

such that for all i ∈ supp p, j ∈ {1, 2, 3, 4}, xi ̸= xj
ip and x1

ip > x2
ip > xip > x3

ip > x4
ip . By Axiom 2,(

p, (x1
ip , x−ip)

)
≻

(
p, (x2

ip , x−ip)
)

≻ (p, x) ≻
(
p, (x3

ip , x−ip)
)

≻
(
p, (x4

ip , x−ip)
)
. (7)

By Axiom 4, there exists αp ∈ (0, 1) such that for all α ∈ (0, αp),

α
(
p, (cip , x−ip)

)
+ (1 − α)

(
p, (x1

ip , x−ip)
)

≻
(
p, (x2

ip , x−ip)
)

(8)

and
(
p, (x3

ip , x−ip)
)

≻ α
(
p, (cip , x−ip)

)
+ (1 − α)

(
p, (x4

ip , x−ip)
)
. (9)

17



Secondly, since X is open and (p, x)∼(q, y) by (7) and Axiom 3, there exist y1
iq , y2

iq , y3
iq , y4

iq , ∈

X such that for all i ∈ supp q, j ∈ {1, 2, 3, 4} yj
iq ̸= yi, y1

iq > y2
iq > yiq > y3

iq > y4
iq ,(

p, (x2
ip , x−ip)

)
≻

(
q, (y1

iq , y−iq)
)

≻
(
q, (y2

iq , y−iq)
)

≻ (q, y), (10)

and (q, y) ≻
(
q, (y3

iq , y−iq)
)

≻
(
q, (y4

iq , y−iq)
)

≻
(
p, (x3

ip , x−ip)
)
. (11)

By Axiom 4, there exists αq ∈ (0, 1) such that for all α ∈ (0, αq),(
q, (y1

iq , y−iq)
)

≻ α
(
q, (ciq , y−iq)

)
+ (1 − α)

(
q, (y2

iq , y−iq)
)

≻ (q, y) (12)

and (q, y) ≻ α
(
q, (ciq , y−iq)

)
+ (1 − α)

(
q, (y3

iq , y−iq)
)

≻
(
q, (y4

iq , y−iq)
)
. (13)

Now there exist α̂p ∈ (0, αp), α̂q ∈ (0, αq) such that α̂ppip = α̂qqiq .

Let ip∗
/∈supp p and denote p̂=(1−α̂p)p+α̂p(0ip , (pip)ip∗ , p−ip,ip∗ ). Similarly let iq∗

/∈supp q

and denote q̂ = (1 − α̂q)q + α̂q(0iq , (qiq)iq∗ , q−iq ,iq∗ ). Now using this notation for all a ∈ X,

x̃ ∈ NDiag(Xp) such that for all i ∈ supp p, x̃i ̸= a, we have α̂p
(
p, (aip , x̃−ip)

)
+(1− α̂p)(p, x̃) =(

p̂, (aip∗ , x̃−ip∗ )
)

and for all a ∈ X, ỹ ∈ NDiag(Xq) such that for all i ∈ supp q, ỹi ̸= a, we

have α̂q
(
q, (aiq , ỹ−iq)

)
+ (1 − α̂q)(q, ỹ) =

(
q̂, (aiq∗ , ỹ−iq∗ )

)
.

So by (8,10,12),(
p, (x1

ip , x−ip)
)

≻
(
p̂, (cip∗ , x1

ip , x−ip∗ ,ip)
)

≻
(
q, (y1

iq , y−iq)
)

≻
(̂
q, (ciq∗ , y2

iq , y−iq∗ ,iq)
)

≻ (p, x) (14)

and by (9,11,13),

(p, x) ≻
(̂
q, (ciq∗ , y3

iq , y−iq∗ ,iq)
)

≻
(
q, (y4

iq , y−iq)
)

≻
(
p̂, (cip∗ , x4

ip , x−ip∗ ,ip)
)

≻
(
p, (x4

ip , x−ip)
)
. (15)

Let ip,2 ∈ supp p, ip ̸= ip,2 and iq,2 ∈ supp q, iq ̸= iq,2. Since |supp p|, |supp q| ≥ 4 by Axiom 3

and (14,15), there exist x̃1, x̃2, ỹ1, ỹ2, x̂1, x̂2 such that for j ∈ {1, 2}

(xip,2 , x̃j
−ip,2) ∈ NDiag(Xp), (yiq,2 , ỹj

−iq,2) ∈ NDiag(Xq), (cip∗ , xip,2 , x̂j
−ip∗ ,ip,2) ∈ NDiag(X p̂),(

p, (xip,2 , x̃1
−ip,2)

)
∼

(
q, (yiq,2 , ỹ1

−iq,2)
)

∼
(
p̂, (cip∗ , xip,2 , x̂1

−ip∗ ,ip,2)
)

∼
(
q̂, (ciq∗ , y2

iq , y−iq∗ ,iq)
)
, (16)

and(
p, (xip,2 , x̃2

−ip,2)
)

∼
(
q, (yiq,2 , ỹ2

−iq,2)
)

∼
(
p̂, (cip∗ , xip,2 , x̂2

−ip∗ ,ip,2)
)

∼
(
q̂, (ciq∗ , y3

iq , y−iq∗ ,iq)
)
. (17)

Finally, let zp∈NDiag(Xp), zq ∈NDiag(Xq) be such that
(
p, (xip,2 , x̃1

−ip,2)
)
≿(p, zp), (q, zq)≿(

p, (xip,2 , x̃2
−ip,2)

)
. By (16,17), there exist zp̂,p ∈ NDiag(X p̂) and zq̂,q ∈ NDiag(X q̂) such that

(p, zp) ∼ (p̂, zp̂,p) and (q, zq) ∼ (q̂, zq̂,q).
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Since p̂ip,2 = pip,2 and q̂iq,2 = qiq,2 , by Lemma 5, we have∑
i∈supp p

u(pi, zp
i ) −

∑
i∈supp p

u
(
pi,(xip,2 , x̃1

−ip,2)i

)
=

∑
i∈supp p̂

u(p̂i, zp̂,p
i ) −

∑
i∈supp p̂

u
(
p̂i,(cip∗ , xip,2 , x̂1

−ip∗ ,ip,2)i

)

and
∑

i∈supp q

u(qi, zq
i ) −

∑
i∈supp q

u
(
qi,(yiq,2 , ỹ1

−iq,2)i

)
=

∑
i∈supp q̂

u(q̂i, zq̂,q
i ) −

∑
i∈supp q̂

u
(
q̂i,(ciq∗ , xiq,2 , x̂1

−iq∗ ,iq,2)i

)
.

Additionally, since p̂ip∗ = α̂ppip = α̂qqiq = q̂iq∗ , by Lemma 5, we have

(p̂, zp̂,p) ≿ (q̂, zq̂,q) ⇐⇒
∑

i∈supp p̂

u(p̂i, zp̂,p
i ) −

∑
i∈supp p̂

u
(
p̂i, (cip∗ , xip,2 , x̂1

−(ip∗ ,ip,2))i

)
≥

∑
i∈supp q̂

u(q̂i, zq̂,q
i )−

∑
i∈supp q̂

u
(
q̂i, (ciq∗ , yiq,2 , ŷ1

−(iq∗ ,iq,2))i

)
.

And so by putting these together,

(p, zp) ≿ (q, zq) ⇐⇒∑
i∈supp p

u(pi, zp
i ) −

∑
i∈supp p

u
(
pi, (xip,2 , x̃1

−ip,2)i

)
≥

∑
i∈supp q

u(qi, zq
i ) −

∑
i∈supp q

u
(
qi, (yiq,2 , ỹ1

−iq,2)i

)
.

Since (p, x) ∼ (q, y), by the above, we have∑
i∈supp p

u(pi, xi) −
∑

i∈supp p

u
(
pi, (xip,2 , x̃1

−ip,2)i

)
=

∑
i∈supp q

u(qi, yi) −
∑

i∈supp q

u
(
qi, (yiq,2 , ỹ1

−iq,2)i

)
so we can subtract it from the both sides of the above equivalencies for the final claim.

A.4 Extending the Local Representation to a Global Representation

First, we define an information function on lotteries that only depends on the induced prob-

ability tree.

Definition A function c : ∆(X) → R is an information function if for all P, Q ∈ ∆(X) with

the same induced probability tree, c(P ) = c(Q).

By Mononen (2021), we can extend the previous local representation to a global repre-

sentation by adding induced probability tree-dependent constant.

Lemma 7 Assume that ≿ satisfies Axioms 1-4 and 7 and there exists u : (0, 1) × X → R

such that for all p ∈ ∆4(N), (u(pi, ·))i∈supp p is an additive representation for ≿p. Then there

exists an information function c : ∆(X) → R such that for all simple lotteries P, Q with

| supp P |, | supp Q| ≥ 4,

P ≿ Q ⇐⇒
∑

x∈supp P

u(P (x), x) + c(P ) ≥
∑

x∈supp Q

u(Q(x), x) + c(Q).
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A.5 Characterizing Prospect Theory

In this section, we replace Axiom 7 with Axioms 5 and 6 and show that under these stronger

axioms the representation from Lemma 7 simplifies to prospect theory.

First, we show that under Axiom 5, we can strengthen Proposition 4 for prospect theory

within induced probability tree.

Proposition 8 Assume that ≿ satisfies Axioms 1-5. Then for all a ∈ (0, 1) there exist

w : [0, 1] → R and a continuous and strictly increasing u(·) such that u(0) = 0 and for all

x, y ∈ NDiag(Xp),

(p, x) ≿ (p, y) ⇐⇒
∑

i∈supp p

w(pi)u(xi) ≥
∑

i∈supp p

w(pi)u(yi).

Proof. By Proposition 4, there exists u : (0, 1) × X → R such that for all p ∈ ∆4(N),

(u(pi, ·))i∈supp p is an additive representation for ≿p with for all a ∈ (0, 1), u(a, 0) = 0 by the

normalization. Let p ∈ ∆4(N). We show that there exists w : [0, 1] → R, θ : (0, 1) → R, and

a continuous and strictly increasing u such that for each pi and xi, u(pi, xi) = w(pi)u(xi).

Directly from Axiom 5, if

u(pi, x) − u(pi, y) ≥ u(pi, z) − u(pi, m), then u(pj, x) − u(pj, y) ≥ u(pj, z) − u(pi, m).

Thus the result follows symmetrically to Wakker (1984).

Next, we show that Axiom 6 makes the information function in Lemma 7 a constant.

Lemma 9 If ≿ satisfies Axioms 1-6, then there exist w : [0, 1] →R and a continuous, strictly

increasing, u : X → R such that for all simple lotteries P, Q with | supp P |, | supp Q| ≥ 4,

P ≿ Q ⇐⇒
∑

x∈supp P

w(P (x))u(x) ≥
∑

x∈supp Q

w(Q(x))u(x).

Proof. By Lemma 7 and Proposition 8, there exist w : [0, 1] → R, a continuous, strictly

increasing, u : X → R and an information function c : ∆(X) → R such that for all simple

lotteries P, Q with | supp P |, | supp Q| ≥ 4,

P ≿ Q ⇐⇒
∑

x∈supp P

w(P (x))u(x) + c(P ) ≥
∑

x∈supp Q

w(Q(x))u(x) + c(Q).

We show that for all P, Q ∈ ∆(X) with | supp P | ≥ 4, c(P ) = c(Q). Assume, per contra, that

there exist p, q∈∆4(N) with c(p)>c(q). Since u(0)=0 by the normalization, by the continuity
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of u, there exist x ∈ NDiag(Xp) and y ∈ NDiag(Xq) such that for all i ∈ supp p, j ∈ supp q,

yj > 0 > xi, and

−
∑

i∈supp p

w(pi)u(xi),
∑

j∈supp q

w(qj)u(yj) <
1
2(c(p) − c(q)).

Thus, ∑
j∈supp q

w(qj)u(yj) + c(q) <
1
2(c(p) + c(q)) <

∑
i∈supp i

w(pi)u(xj) + c(p).

However, by Axiom 6, (p, x)≿ δ0 ≿ (q, y) that is a contradiction with the representation.

Finally, we show that the probability weighting function w is continuous and we can

extend the representation for all the lotteries. This shows sufficiency for Theorem 1.

Proof of Theorem 1. Necessity of the axioms is standard and omitted. We show the suffi-

ciency of the axioms.

By Lemma 9, there exist w : [0, 1] → R and a continuous, strictly increasing, u : X → R

such that for all simple lotteries P, Q with | supp P |, | supp Q| ≥ 4,

P ≿ Q ⇐⇒
∑

x∈supp P

w(P (x))u(x) ≥
∑

x∈supp Q

w(Q(x))u(x).

We show first that limp→0 w(p) = 0. Let ε > 0 and let x1, x2, x3 ∈ X with x1 > x2 > x3 > 0.

Let P ∈ ∆(X) with | supp P | ≥ 4 and 0 <
∑

x∈supp P w(P (x))u(x) < 3u(x3)ε. By the

continuity u, there exists Q ∈ ∆(X) with | supp Q| ≥ 4 such that for all x ∈ supp Q, x > 0

and ∑
x∈supp P w(P (x))u(x) >

∑
x∈supp Q w(Q(x))u(x). Thus P ≻ δ0. By Axiom 4, there exists

α∗ ∈ (0, 1) such that for all α ∈ (0, α∗),

P ≿ α
(1

3δx1 + 1
3δx2 + 1

3δx3

)
+ (1 − α)δ0.

Thus by the representation, for all α ∈ (0, α∗)

3u(x3)ε >
∑

x∈supp P

w(P (x))u(x) ≥ w(α

3 )u(x1) + w(α

3 )u(x2) + w(α

3 )u(x3) > 3w(α

3 )u(x3)

and so for all α ∈ (0, α∗

3 ), ε > w(α). Since ε > 0 was arbitrary, this shows that limp→0 w(p) = 0.

Next, we show that there exists c ∈ R such that limp→1 w(p) = c. Let (rn)n∈N ⊂ (0, 1) be

such that rn → 1 as n → ∞ and limn→∞ w(rn) exists and (w(rn))n∈N is a monotone sequence.

Assume w.l.o.g. that (w(rn))n∈N is an increasing sequence. By possibly taking a subsequence,

assume w.l.o.g. that (w(1−rn

3 ))n∈N is a monotone sequence. By above, (w(1−rn

3 ))n∈N is a
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weakly decreasing sequence.

Denote limn→∞ w(rn) = c. Let ε̃ > 0 and let x1 ∈ X with x1 > 0. Let ε < ε̃u(x1) be

such that [u(x1), (u(x1) + ε)(1 + ε)] ⊆ u(X). There exists n0 ∈ N such that w(rn0) > c
1+ε

and ε
4 > w(1−rn0

3 ). Now, by the continuity of u and the choice of ε, there exists x2 > x1 and

x3, x4 > 0 such that 1 > u(x3), u(x4) and

cu(x1) + ε > w(rn0)u(x2) + w
(
1 − rn0

3
)
u(x3) + w

(
1 − rn0

3

)
u(x4) > cu(x1) + ε

2 .

For all n > n0,

w(rn)u(x1) + w
(

1 − rn

3

)
u(x3) + w

(
1 − rn

3

)
u(x4)

< cu(x1) + w
(

1 − rn

3

)
u(x3) + w

(
1 − rn

3

)
u(x4) < cu(x1) + ε

2 .

Thus, by the representation, there exists P ∈ ∆(X) such that for all n ∈ N

rn0δx2 + 1 − rn0

3 δx3 + 1 − rn0

3 δx4 + 1 − rn0

3 δ0 ≻ P ≻ rnδx1 + 1 − rn

3 δx3 + 1 − rn

3 δx4 + 1 − rn

3 δ0.

By Axiom 4,

rn0δx2 + 1 − rn0

3 δx3 + 1 − rn0

3 δx4 + 1 − rn0

3 δ0 ≻ δx1 .

By Axiom 4, there exists α+ ∈ (0, 1) such that for all α ∈ (α+, 1)

rn0δx2 + 1 − rn0

3 δx3 + 1 − rn0

3 δx4 + 1 − rn0

3 δ0 ≻ αδx1 + 1 − α

3 δx3 + 1 − α

3 δx4 + 1 − α

3 δ0.

By the representation, for all α ∈ (α+, 1),

cu(x1) + ε > w(rn0)u(x2) + w
(

1 − rn0

3

)
u(x3) + w

(
1 − rn0

3

)
u(x4)

>w(α)u(x1) + w
(

1 − α

3

)
u(x3) + w

(
1 − α

3

)
u(x4) > w(α)u(x1)

and so for all α ∈ (α+, 1), ε̃ > ε
u(x1) > w(α) − c.

Symmetrically, by repeating the argument for 0 > x5, x6, x7 and x6 > x7 such that

cu(x1) − ε < w(rn0)u(x1) + w
(

rn0
3

)
u(x5) + w

(
rn0
3

)
u(x7), we get that there exists α− < 1 such

that for all α ∈ (α−, 1), ε̃ > ε
u(x1) > c − w(α).

Since ε̃ > 0 was arbitrary, this shows that limp→1 w(p) = c. Thus by scaling the repre-

sentation, we can assume w.l.o.g. that limp→1 w(p) = 1.

Next, we show that w is continuous in (0, 1). Let x, y, z ∈ X with x > y > z > 0. Let

p ∈ (0, 1) and let ε > 0. By the representation and the continuity of u, there exist P and Q
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with | supp P |, | supp Q| ≥ 4, and

w(p)u(x) + w
(1 − p

3

)
u(y) + w

(1 − p

3

)
u(z) + ε

u(x) >
∑

x∈supp P

w(P (x))u(x)

>w(p)u(x) + w
(1 − p

3

)
u(y) + w

(1 − p

3

)
u(z)

>
∑

x∈supp Q

w(Q(x))u(x) > w(p)u(x) + w
(1 − p

3

)
u(y) + w

(1 − p

3

)
u(z) − ε

u(x) .

By the representation, P ≻ pδx + 1−p
3 δy + 1−p

3 δz + 1−p
3 δ0 ≻ Q. By applying Axiom 4 twice,

there exists 0 < β < p, 1 − p such that for all α ∈ (p − β, p + β),

P ≻ αδx + 1 − p

3 δy + 1 − p

3 δz + (1 − α − 21 − p

3 )δ0 ≻ Q

By the representation for all α ∈ (p − β, p + β),

w(p)u(x)+w
(1−p

3

)
u(y)+w

(1−p

3

)
u(z)+ ε

u(x) >w(α)u(x)+w
(1−p

3

)
u(y)+w

(1−p

3

)
u(z)

> w(p)u(x) + w
(1 − p

3

)
u(y) + w

(1 − p

3

)
u(z) − ε

u(x)

and so for all α ∈ (p − β, p + β), ε > w(α) − w(p) > −ε. Since ε > 0 was arbitrary, this shows

the continuity of w.

Next, we show that for all lotteries (p, x) and (q, y)

(p, x) ≻ (q, y) ⇐⇒
∑

i∈supp p

w(pi)u(xi) >
∑

i∈supp q

w(qi)u(yi).

First, assume that (p, x) ≻ (q, y). By Axiom 3 and since X is open, there exist x̃ ∈

NDiag(Xp), ỹ ∈ NDiag(Xp) such that for each i ∈ supp p, xi > x̃i and j ∈ supp q, ỹj > yj with

(p, x̃) ≻ (q, ỹ). Let r ∈ ∆(N) and z ∈ NDiag(Xr) be such that for all i ∈ supp r, j ∈ supp p,

k ∈ supp q, xj ̸= zi ̸= yk. By the continuity of w, monotonicity of u, and Axiom 4, there

exists α ∈ (0, 1) such that∑
i∈supp p

w(pi)u(xi) >
∑

i∈supp p

w(αpi)u(x̃i) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi),

∑
i∈supp p

w(αpi)u(ỹi) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi) >

∑
i∈supp q

w(pi)u(yi),

and α(p, x̃) + (1 − α)(r, z) ≻ α(q, ỹ) + (1 − α)(r, z). Thus by the representation∑
i∈supp p

w(αpi)u(x̃i) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi) >

∑
i∈supp p

w(αpi)u(ỹi) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi)

and so by the strict monotonicity of u and continuity of w, ∑
i∈supp p w(pi)u(xi)>

∑
i∈supp q w(pi)u(yi).

Second, assume that ∑
i∈supp p w(pi)u(xi) >

∑
i∈supp q w(qi)u(yi). Since u is continuous and
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X is open, there exist x̃ ∈ NDiag(Xp), ỹ ∈ NDiag(Xq) such that for each i ∈ supp p, xi > x̃i

and j ∈ supp q, ỹj > yj with ∑
i∈supp p w(pi)u(x̃i) >

∑
i∈supp q w(pi)u(ỹi).

Let r ∈ ∆(N) and z ∈ NDiag(Xr) with for all i ∈ supp r, j ∈ supp p, k ∈ supp q, xj ̸= zi ̸= yk.

By the continuity of w, there exists α∗ ∈ (0, 1) such that for all α ∈ (α∗, 1)∑
i∈supp p

w(αpi)u(x̃i) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi) >

∑
i∈supp q

w(αqi)u(ỹi) +
∑

j∈supp r

w
(
(1 − α)ri

)
u(zi).

By the representation for all α ∈ (α∗, 1), α(p, x̃) + (1 − α)(r, z) ≿ α(q, ỹ) + (1 − α)(r, z). By

Axioms 2 and 4, (p, x) ≻ (p, x̃) ≿ (q, ỹ) ≻ (q, y).
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