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In ergodic singular stochastic control problems, a decision-maker can
instantaneously adjust the evolution of a state variable using a control of
bounded variation, with the goal of minimizing a long-term average cost func-
tional. The cost of control is proportional to the magnitude of adjustments.
This paper characterizes the optimal policy and the value in a class of multi-
dimensional ergodic singular stochastic control problems. These problems in-
volve a linearly controlled one-dimensional stochastic differential equation,
whose coefficients, along with the cost functional to be optimized, depend on
a multi-dimensional uncontrolled process Y . We first provide general veri-
fication theorems providing an optimal control in terms of a Skorokhod re-
flection at Y -dependent free boundaries, which emerge from the analysis of
an auxiliary Dynkin game. We then fully solve two two-dimensional optimal
inventory management problems. To the best of our knowledge, this is the
first paper to establish a connection between multi-dimensional ergodic sin-
gular stochastic control and optimal stopping, and to exploit this connection
to achieve a complete solution in a genuinely two-dimensional setting.

1. Introduction.

State of the art. In singular stochastic control problems, a decision-maker can instan-
taneously adjust the dynamics of an underlying state process via a control process that has
paths of bounded variation. The control’s action may cause discontinuities in the state process
and may exhibit (and typically does exhibit) singular behavior, in the sense that the (random)
Borel-measure on the time axis induced by the optimal control process may be singular with
respect to the Lebesgue measure.

A rich body of literature addresses infinite time-horizon discounted problems as well as
finite time-horizon problems and their applications. In such problems, the optimal policy
typically involves reflecting the state process at the topological boundary (free boundary)
of the so-called no-action (also known as continuation) region, where the optimally con-
trolled process should be maintained with minimal effort. The construction of the optimal
control process is then framed in terms of the solution to a Skorokhod reflection problem
(see [11, 56, 57] and the more recent [27] for a review of the literature). Under suitable con-
ditions, the boundary of the no-action region in a singular stochastic control problem can be
identified with the free boundary arising in an auxiliary optimal stopping problem, whose
value function is given by the derivative (in the direction of the optimally controlled state)
of the singular stochastic control problem’s value function. See, among others, [6, 51] for
the connection between monotone problems and optimal stopping; [10, 53] for the relation
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between bounded-variation problems and Dynkin games (zero-sum games of optimal stop-
ping); and [24] for a connection between nonzero-sum games of singular stochastic control
and games of optimal stopping. Thanks to the connection with optimal stopping, the charac-
terization of the optimal policy is closely linked to the study of obstacle problems, which are
more tractable than variational inequalities with gradient constraints, as those appearing in
infinite time-horizon discounted or finite time-horizon singular stochastic control problems.
Today, there exists a satisfactory understanding of those classes of singular stochastic con-
trol problems, and significant progress has been made in characterizing the optimal policy in
various multi-dimensional settings (see, e.g., [17, 18, 23, 36, 77]).

On the other hand, singular stochastic control problems with an ergodic (long-time av-
erage) performance criterion have been studied far less than their infinite-time horizon dis-
counted or finite-time horizon counterparts. They arise, for example, in optimal inventory
management (see, e.g., [43, 79]), in approximation of queuing systems under heavy traffic
(see, e.g., [3, 4, 12] and [54, 55] for the discounted case), in applications where it is crucial to
consider the payoffs received by successive generations, such as the exploitation of a natural
resource [1, 20, 60], and also appear in the asymptotic expansion of optimal consumption-
investment problems with small transaction costs (see [73, 78]). We also refer to [21] for
the existence of relaxed solutions to multi-dimensional stationary singular stochastic control
problems and their mean-field game counterpart, to [59] for the linear programming formu-
lation of ergodic singular control problems, as well as to [19] for data-driven rules in ergodic
reflection problems.

In ergodic singular stochastic control problems, the dynamic programming equation (DPE)
takes the form of a variational problem for the pair (v,λ⋆), where v is the so-called poten-
tial function and λ⋆ is the value of the problem, which is constant due to the ergodic setting
– see [46, 67, 66] for studies of such equations via methods from the theory of partial dif-
ferential equations (PDEs). In one-dimensional settings, the dynamic programming equation
reduces to an ordinary differential equation with a derivative constraint, allowing explicit
solutions via the "guess-and-verify" method. Typically, the no-action region is an interval
on the real line (possibly unbounded) and λ⋆ can be expressed in terms of the problem’s
data and the free boundary. For explicitly solvable ergodic problems in one dimension, see
[1, 58, 60, 79, 81, 80], among others. Additionally, [64, 65] address two-dimensional fully
degenerate problems that remain solvable using the "guess-and-verify" approach. However,
the absence of a probabilistic representation for the potential function v makes, to the best of
our knowledge, the characterization of the optimal singular control policy an open problem
in truly multi-dimensional settings.

Our contributions. In this paper, we contribute to this open question by providing a char-
acterization of the optimal policy in a class of multi-dimensional singular stochastic control
problems. This is achieved by establishing a novel connection to optimal stopping. Our set-
ting considers a one-dimensional Itô-diffusion X that is linearly controlled by a bounded-
variation process (the singular control) and has drift and volatility coefficients modulated by
an uncontrolled (factor) process Y valued in Rd, d ≥ 1. This latter process also affects the
long-term average expected cost functional that the decision-maker aims to minimize.

We first provide a general verification theorem (see Theorem 2.1 below) that allows us to
recover the value of the problem as the limit superior of the expected long-term average of the
process (λ(Yt))t≥0, where the Borel-measurable function λ :Rd →R appears, together with
a function V :Rd×R→R, as the solution to an auxiliary PDE with gradient constraints. It is
important to note that this PDE is not the dynamic programming equation associated with the
ergodic problem, meaning that the pair (V,λ) does not represent the potential function and
the problem’s value, respectively. In what follows, we shall refer to V as the pseudo-potential
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function. Furthermore, it is important to note that our results hold even in the case of a process
Y that is not ergodic and thus does not admit a stationary distribution (see Remark 2.1 below).

In Theorem 2.1, we also show that a control process (if it exists) that keeps the state process
à la Skorokhod in the region where the gradient constraints are not binding is, in fact, optimal.
To identify this region and thereby characterize the optimal control, Theorems 2.2 and 2.3
demonstrate (under different regularity conditions) that (V,λ) from Theorem 2.1 can be con-
structed by analyzing an auxiliary optimal stopping problem. Specifically, this is a zero-sum
optimal stopping game with value U . In particular, V is given as the integral of U with re-
spect to x, and λ(y) can be determined in terms of the free boundaries associated with U and
the problem’s data. It is worth noticing that a connection to optimal stopping in this spirit had
already been observed in [50, 79] in the one-dimensional setting (see also [15, 16, 28] in the
context of one-dimensional stationary mean-field games of singular controls with scalar in-
teraction). However, such a relation is obtained via direct computations based on the fact that
the underlying process is one-dimensional, thus leading to a dynamic programming equation
for the problem’s value which is an explicitly solvable ODE with derivative constraint. To
the best of our knowledge, this is the first paper to establish a connection between optimal
stopping and ergodic singular stochastic control in multiple dimensions and to exploit it as a
road-map for characterizing the value and the optimal policy.

The general verification theorems 2.1, 2.2, and 2.3 are then tested in two case studies
arising in the field of inventory control. We consider two different inventory models with
stochastic mean-reversion levels. The two examples differ in their mean-reversion level dy-
namics and observability specifications, such that, in the first case, the weaker conditions of
Theorem 2.3 are met, while in the second case study, Theorem 2.2 applies.

The first case study treated in Section 3.1 deals with the optimal management of an in-
ventory for which the level of mean-reversion is modulated by a two-state continuous-time
Markov chain, which, however, is not observable by the decision maker. This leads to an
ergodic singular stochastic control problem under partial observation, which we address by
studying the equivalent separated problem. In the latter, the state process is a truly two-
dimensional diffusion, whose first component is given by the dynamics of the inventory
(which can be instantaneously increased or decreased via a control of bounded variation),
and whose second component is the filter or belief process. Given that these two components
are driven by the same Brownian motion (the so-called innovation process), the diffusion
term of the state process is degenerate. Following the receipt of Theorems 2.1 and 2.3, we
identify a Dynkin game of optimal stopping whose value U is expected to coincide with the
derivative of the pseudo-potential function in the direction of the inventory component of the
state process. The analysis of such a Dynkin game is anything but standard. In fact, the afore-
mentioned degeneracy of the state process leads to the fact that the second-order differential
operator appearing in the variational inequality associated with U is of parabolic type. By in-
troducing a change of variables that expresses the differential operator in its canonical form,
and studying the optimal stopping problem in those new coordinates, we are able to show
that U ∈C1(R2), and that two bounded, non-increasing belief-dependent free boundaries a±
trigger the saddle point of the stopping game. The free boundaries a± yield the optimal con-
trol process, as it is constructed as the process that reflects the (optimally controlled) inven-
tory process X⋆ at the belief-dependent free boundaries a± so that a+(Yt)≤X⋆

t ≤ a−(Yt)
dP⊗ dt-almost everywhere. The results follows from the application of Theorems 2.1 and
2.3, which can be applied thanks to the regularity properties of U . It is worth noting that the
continuous differentiability of U is proven by suitably employing techniques as in [25], after
proving that the boundary points are probabilistically regular for the state process. The proof
of this fact, in turn, hinges on the Feller property of the state process, which we show by
proving that the infinitesimal generator of the state process, though not uniformly elliptic, is
hypoelliptic, as it satisfies the Hörmander conditions (see also [33]).
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In the second case-study, we deal with a nondegenerate problem (in the sense that the
involved second-order differential operator is uniformly elliptic) for which the conditions
of Theorems 2.1 and 2.2 are met. In this example, the stochastic mean-reversion level of
the stored good evolves as a mean-reverting diffusion itself. In this case, the Dynkin game
which is expected to be associated (in the sense of Theorem 2.2) to the ergodic singular
stochastic control problem has value function U ∈W2,∞

loc (R2) and its saddle point is given
by the entry times of the underlying state process to the regions where U equates the two
obstacles (the stopping regions). The boundaries of those sets can be described in terms of two
non-increasing curves (the free boundaries) which are finite and Lipschitz-continuous. The
Lipschitz-continuity of the free boundaries is functional in the application of Theorem 2.2 as
it allows to obtain the required transversality condition. Moreover, the Lipschitz property of
a± is also an interesting result per se, given that in certain obstacle problems the Lipschitz
property is the preliminary regularity needed to upgrade – via a bootstrapping procedure and
suitable technical conditions – the regularity of the free boundary to C1,α-regularity, for some
α ∈ (0,1) and eventually to C∞-regularity (see the introduction of [26] for a discussion and
literature review on this).

The rest of this paper is organized as follows: in Section 2, we define the ergodic stochas-
tic singular control problem, state the assumptions and prove the verification theorems. In
particular, In Section 2.1 we introduce the PDE for the pair pseudo-potential function-value
profile (V,λ), and we state and prove a preliminary verification theorem, while in Section 2.2
we identify the auxiliary Dynkin game, and we show how to use its value function to build a
solution (V,λ) and an optimal control. In Section 2.3, we gather some remarks on the previ-
ous results. Section 3 contains the application of previous results to inventory managements
problems. In particular, in Section 3.1 an inventory control problem with partially observable
demand is considered, while Section 3.2 addresses an inventory control problem with fully
observable demand.

1.1. Notation. For n≥ 1, we denote by Rn×n the set of n× n real-valued matrices. We
follow the convention that Rd is identified by column-vectors, i.e. d× 1 matrices.

For any n,k ≥ 1 and any O ⊆ Rn, we denote by Ck(O) the set of real-valued k-times
continuously differentiable functions. When k =∞, we mean that the function is infinitely
many times differentiable. Analogously, we write Ck

b (Rd) to denote the space of function
f ∈Ck(O) bounded and with bounded derivatives. We denote by C∞

c (O) the set of infinitely
many times real-valued functions with compact support. We indicate by L∞

loc(O) the set of
all locally bounded functions with respect to Lebesgue measure. We denote by W2,∞

loc (O) the
Sobolev space of all functions f ∈ L∞

loc(O) such that the partial derivatives up to the second
order exist in the weak sense and are in L∞

loc(O). For any f in C2(O) or W2,∞
loc (O), we denote

the (weak) derivative with respect to x1 and x2 by fx1x2
.

For n1, n2 ≥ 1 and O⊆Rn1 ×Rn2 , we denote by C2,1(O) the set of real-valued continu-
ous functions on O that are continuously differentiable twice with respect to the first variable
and once with respect to the second. We write C2,1

b (O) when the considered function is
bounded, with bounded derivatives.

2. The Problem. Let d≥ 1. Let (Ω,F ,F := (Ft)t≥0,P) be a complete filtered probabil-
ity space, with F satisfying the usual assumptions, on which F-adapted standard Brownian
motion W and d-dimensional Brownian motion B are defined. We assume that W and B
are correlated, in the sense that there exists a vector ρ = (ρi)

d
i=1, −1 ≤ ρi ≤ 1, so that the

quadratic variation ⟨W,Bi⟩t is equal to ρit, for any t ≥ 0, for any i = 1, . . . , d1. Let ξ be a

1For a possible construction, consider (Bi)di=1 independent standard Brownian motions, and (ρi)
d
i=1 so that∑d

i=1 ρ
2
i = 1. Then, W =

∑d
i=1 ρiB

i is a standard Brownian motion so that ⟨W,Bi⟩t = ρit.
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singular control, i.e. a process ξ : [0,∞)×Ω→ [0,∞) which is F-adapted, ξ càdlàg, ξ0− = 0
P-a.s. and whose total variation in any interval [0, T ], T > 0, is finite, i.e. |ξ|[0,T ] <∞. More-
over, we assume that E[|ξ|[0,T ]]<∞ for any T > 0. We identify ξ with its positive and nega-
tive parts given by the Jordan decomposition, i.e. ξt = ξ+t −ξ−t P-a.s. with ξ± non-decreasing
and with disjoint support.

Let (b, σ) : R× Rd → R× R and (η, ζ) : Rd → Rd × Rd×d be measurable, where Rd×d

denotes the set of d× d real-valued matrices. For any (x, y) ∈ R×Rd and singular control
ξ, we consider (Xξ, Y ) to be the solution of the pair of stochastic differential equations

(2.1)

{
dXξ

t = b(Xξ
t , Yt)dt+ σ(Xξ

t , Yt)dWt + dξ+t − dξ−t , Xξ
0− = x,

dYt = η(Yt)dt+ ζ(Yt)dBt, Y0 = y.

Whenever necessary, to stress the dependence of the solution to (2.1) on the initial condi-
tions (x, y) ∈R×Rd, we write Ex,y[·] to denote the expectation under Px,y(·) = P(·|Xξ

0− =
x,Y0 = y). Analogously, we write Ey[·] to denote the expectation under Py(·) = P(·|Y0 = y).
Conditions on b, σ, η, ζ appear in Assumption 2.1 below.

In the sequel, the following class of admissible controls, satisfying a suitable growth con-
dition, will be employed:

DEFINITION 2.1. A singular control ξ is admissible if

(2.2) lim
T→∞

1

T
Ex,y[|Xξ

T |] = 0.

We denote by B the set of admissible controls.

We then consider the long-time average (ergodic) singular stochastic control problem

(2.3) inf
ξ∈B

lim
T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
,

where c : R × Rd → [0,+∞) is a suitable measurable function and K+,K− > 0 are fixed
constants. We say that ξ⋆ is optimal for the ergodic singular control problem if the associated
cost functional as in (2.3) is minimal.

Let (X0, Y ) be the uncontrolled process, solving the SDE

(2.4)

{
dX0

t = b(X0
t , Yt)dt+ σ(X0

t , Yt)dWt, X0
0 = x ∈R,

dYt = η(Yt)dt+ ζ(Yt)dBt, Y0 = y ∈Rd,

and denote by L(X0,Y ) its infinitesimal generator, i.e.

(2.5) L(X0,Y )f(x, y) = b(x, y)fx(x, y) +
1

2
σ2(x, y)fxx(x, y) +

d∑
i=1

ηi(y)fyi
(x, y)

+
1

2

d∑
i,j=1

aij(y)fyiyj
(x, y) +

d∑
i,j=1

ρjσ(x, y)ζij(y)fxyi
(x, y)

where f ∈ C2
b(R × Rd) and a(y) := (ζζ⊤)(y). We denote by (ρζ) : Rd → Rd the function

given by (ρζ)i(y) =
∑d

j=1 ρjζij(y), so that the generator L(X0,Y ) can be expressed equiva-
lently in matrix form as
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(2.6) L(X0,Y )f(x, y) = b(x, y)fx(x, y) +
1

2
σ2(x, y)fxx(x, y) + η(y)∇yf(x, y)

+
1

2
tr
(
a(y)∇2

yf(x, y)
)
+ σ(x, y)(ρζ)(y)∇yfx(x, y).

We make the following standard assumptions on the functions involved so far:

ASSUMPTION 2.1.

1. b(x, y) and σ(x, y) are Lipschitz-continuous with at most linear growth; moreover, the
partial derivatives bx(x, y) and σx(x, y) exist and they are continuous, and (σσx)(x, y) is
locally Lipschitz, jointly in (x, y);

2. η(y) and ζ(y) are Lipschitz-continuous with at most linear growth; moreover, σx(x, y)ζij(y)
is locally Lipschitz jointly in (x, y);

3. c(x, y) is jointly continuous in (x, y) and continuously differentiable with respect to x.
Moreover, there exist p≥ 1 and κ > 0 so that |c(x, y)| ≤ κ(1+ |x|p+ |y|p) for any (x, y) ∈
R×Rd.

Points 1 and 2 in Assumptions 2.1 are standard and are related to existence and uniqueness
of stochastic differential equations (see (2.4) and (2.20)). The differentiability assumptions
on b(x, y) and c(x, y) guarantee that the auxiliary Dynkin game (see (2.22)) is well-defined.

2.1. A preliminary verification theorem. In order to state and prove the first verification
theorem for problem (2.3) (see Theorem 2.1 below), we introduce the following partial dif-
ferential equation (PDE) for the pair (V,λ), where V : R×Rd →R and λ : Rd →R:
(2.7)
min{L(X0,Y )V (x, y)+c(x, y)−λ(y),−Vx(x, y)+K−, Vx(x, y)+K+}= 0, (x, y) ∈R×Rd,

and we divide R×Rd in the following subsets I , A+ and A−:

(2.8)

A+ := {(x, y) ∈R×Rd : Vx(x, y) +K+ ≤ 0},

A− := {(x, y) ∈R×Rd : K− − Vx(x, y)≤ 0},

I := {(x, y) ∈R×Rd : −K+ < Vx(x, y)<K−}.

We say that (V,λ) is a solution to (2.7) if V ∈W2,∞
loc (R×Rd), λ ∈ L∞

loc(Rd) and (2.7) holds
true for a.e. (x, y) ∈R×Rd. Notice that, if (V,λ) is a solution to (2.7), then Vx ∈C(R×Rd)
by Sobolev’s embedding. It follows then that A+ and A− are closed and I is open. Moreover,
as (V,λ) solves equation (2.7) a.e., we have that Vx(x, y) +K+ ≥ 0 for almost all (x, y),
and similarly −Vx(x, y) +K− ≥ 0 a.e. This fact, paired with the definition of A± and the
continuity of Vx, implies that A+ = {(x, y) : Vx(x, y)+K+ = 0}, A− = {(x, y) : Vx(x, y)−
K− = 0} and

L(X0,Y )V (x, y) + c(x, y)− λ(y) = 0 for a.e. (x, y) ∈ I.

The following verification theorems relates (V,λ) to the value of problem (2.3) and the
optimal control ξ⋆.

THEOREM 2.1. Recall (2.8). Let (V,λ) be a solution to (2.7) such that V ∈ C2(I),
|V (x, y)| ≤ κ(1+ |x|) for some κ > 0 and (λ(Yt))t∈[0,T ] is dP⊗dt integrable, for any T > 0.
Then,
(2.9)

lim
T→+∞

1

T
Ey

[∫ T

0
λ(Ys)ds

]
≤ inf

ξ∈B
lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
.
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Moreover, suppose that there exists an admissible control ξ⋆ ∈ B such that (Xξ⋆

t , Yt) ∈ I ,
P-a.s., for almost all t≥ 0, and such that, for all t≥ 0,

ξ⋆,+t =

∫
[0,t]

1(Xξ⋆
s ,Ys)∈A+

dξ⋆,+s , ξ⋆,−t =

∫
[0,t]

1(Xξ⋆
s ,Ys)∈A−

dξ⋆,−s , P− a.s.

Then
(2.10)

lim
T→+∞

1

T
Ey

[∫ T

0
λ(Ys)ds

]
≥ lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ⋆

t , Yt)dt+K+ξ
⋆,+
T +K−ξ

⋆,−
T

]
.

PROOF. We argue as in [38, Chapter VIII, Theorem 4.1] (see also [7, Theorem 2.4]). For
each m ≥ 1, we consider the standard mollifier ϕm(x, y) = m−(d+1)ϕ(mx,my) with ϕ ∈
C∞
c (B1(0)), ϕ≥ 0,

∫
Rd+1 ϕ(x, y)dxdy = 1, where B1(0) is the ball in Rd+1 centered in zero

with radius one, so that ϕm(x, y) ∈C∞
c (B1/m(0)). Then, we define (V m)m≥1 ⊂C∞(Rd+1)

by convolution as V m := V ∗ ϕm. Since V ∈W2,∞
loc (R×Rd), V ∈ C1(R×Rd) by Sobolev

embedding. Thus, for any compact set K ⊂R×Rd, it holds
(2.11)
lim
k→∞

||V m−V ||L∞(K) = 0, lim
k→∞

||D(V m−V )||L∞(K) = 0, ∀D ∈ {∂x, ∂yi
, i= 1, . . . , d}.

Since the second-order derivatives are not continuous over R×Rd, we can not conclude that
the second-order derivatives of V m converge to the corresponding second-order derivatives
of V uniformly on every compact subset of R × Rd. However, by using the definition of
weak derivative and the fact that V ∈ W2,∞

loc (R × Rd), it holds D(V m) = (DV ) ∗ ϕm for
any D= ∂zu, with z,u= x, y1, . . . , yd. Then, exploiting the continuity of the coefficients of
L(X0,Y ) we deduce that

(2.12) εm,K := sup
(x,y)∈K

|L(X0,Y )V
m(x, y)− (L(X0,Y )V ∗ ϕm)(x, y)| m→∞−→ 0,

for any compact K ⊆R×Rd. Let now cm := c ∗ ϕm and λm := λ ∗ ϕm and notice that (2.7)
implies

(2.13) (L(X0,Y )V ) ∗ ϕm(x, y) + cm(x, y)− λm(x, y)≥ 0 ∀ (x, y) ∈R×Rd.

As λ is a function of y only, the convolution λ∗ϕm is actually just a function of y, as it can be
directly verified from the definition of convolution. By triangulating with (L(X0,Y )V ) ∗ ϕm,
using (2.12) and (2.13), we find

(2.14)

inf
(x,y)∈K

(
L(X0,Y )V

m(x, y) + cm(x, y)− λm(y)
)

≥ inf
(x,y)∈K

(
(L(X0,Y )V ) ∗ ϕm(x, y)−L(X0,Y )V

m
)

+ inf
(x,y)∈K

(
(L(X0,Y )V ) ∗ ϕm(x, y) + cm(x, y)− λm(y)

)
≥−εm,K

m→∞−→ 0.

Let then (x, y) ∈ R × Rd and let (Kn)n≥1 be a sequence of compact sets such that Kn ⊂
Kn+1 and limn→∞Kn = R×Rd. Also, set τn := inf{t≥ 0 : (Xξ

t , Yt) /∈Kn}. By applying
Dynkin’s formula to (V m(Xt, Yt))t≥0, under Px,y we obtain

Ex,y[V
m(Xξ

t∧τn , Yt∧τn)]− V m(x, y)

= Ex,y

[∫ t∧τn

0
L(X0,Y )V

m(Xξ
s , Ys)ds+

∫ t∧τn

0
V m
x (Xs−, Ys−)dξs
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+
∑

0<s≤t∧τn

(
V m(Xξ

s , Ys)− V m(Xξ
s−, Ys−)− V m

x (Xξ
s−, Ys−)∆ξs

)]

= Ex,y

[∫ t∧τn

0
L(X0,Y )V

m(Xξ
s , Ys)ds+

∫ t∧τn

0
V m
x (Xs−, Ys−)dξ

c
s

+
∑

0<s≤t∧τn

(
V m(Xξ

s , Ys)− V m(Xξ
s−, Ys−)

)]
,

where ξc denotes the continuous part of ξ. As Y is continuous and Xξ
s =Xξ

s− ±∆ξ±s , we
deduce that, for any s≥ 0, it holds

V m(Xξ
s , Ys)− V m(Xξ

s−, Ys−) =

∫ ∆ξ+s

0
V m
x (Xξ

s− + z,Ys)dz −
∫ ∆ξ−s

0
V m
x (Xξ

s− − z,Ys)dz,

Px,y-a.s. Hence,

(2.15)

Ex,y[V
m(Xξ

t∧τn , Yt∧τn)]− V m(x, y)

= Ex,y

[∫ t∧τn

0
L(X0,Y )V

m(Xξ
s , Ys)ds+

∫ t∧τn

0
V m
x (Xs, Ys)dξ

c
s

+
∑

0<s≤t∧τn

(∫ ∆ξ+s

0
V m
x (Xξ

s− + z,Ys)dz −
∫ ∆ξ−s

0
V m
x (Xξ

s− − z,Ys)dz
)]

.

Given that (Xξ
s∧τn , Ys∧τn)s≥0 belongs to the compact Kn, Px,y-a.s., for n large enough, we

add and subtract cm(Xξ
t , Yt) − λm(Yt) in the first integral in the right-hand side of (2.15),

invoke (2.14) and use the bounds on the partial derivative V m
x given by (2.7), to deduce

(2.16)
Ex,y[V

m(Xξ
t∧τn , Yt∧τn)]− V m(x, y)

≥ Ex,y

[∫ t∧τn

0

(
λm(Ys)− εm,Kn

− cm(Xξ
s , Ys)

)
ds

]
+Ex,y

[∫ t∧τn

0
V m
x (Xs, Ys)dξ

c
s

]
+Ex,y

[ ∑
0<s≤t∧τn

(∫ ∆ξ+s

0
V m
x (Xξ

s− + z,Ys)dz −
∫ ∆ξ−s

0
V m
x (Xξ

s− − z,Ys)dz
)]

.

Now we aim at taking the limit as m ↑ ∞. Note that, given the continuity of c, we have
cm(x, y) → c(x, y) for any x ∈ R. This implies cm(Xξ

s , Ys) → c(Xξ
s , Ys) for every s ≥ 0,

Px,y-a.s. Moreover, as λ ∈ L∞
loc(Rd), we have λm(y)→ λ(y) a.e. Finally, since the process

(Xs∧τn , Ys∧τn)s≥0 belongs to the compact Kn, we can safely invoke (2.11) and the fact that
(λm)m≥1 are uniformly bounded on compact sets of Rd to deduce that as m ↑∞:

(2.17)

Ex,y[V (Xξ
t∧τn , Yt∧τn)]− V (x, y)

≥ Ex,y

[∫ t∧τn

0

(
λ(Ys)− c(Xξ

s , Ys)
)
ds+

∫ t∧τn

0
Vx(Xs, Ys)dξ

c
s

]
+Ex,y

[ ∑
0<s≤t∧τn

(∫ ∆ξ+s

0
Vx(X

ξ
s− + z,Ys)dz −

∫ ∆ξ−s

0
Vx(X

ξ
s− − z,Ys)dz

)]

≥ Ex,y

[∫ t∧τn

0
λ(Ys)ds

]
−Ex,y

[∫ t∧τn

0
c(Xξ

s , Ys)ds+K+ξ
+
t∧τn +K−ξ

−
t∧τn

]
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where in the last inequality we used the bounds on the partial derivatives of V given by (2.7).
We conclude by taking the limit as n ↑∞. In order to do that, we first notice that τn →∞,

P-a.s. Upon observing that |V (Xξ
t∧τn , Yt∧τn)| ≤ κ(1+ |Xξ

t∧τn |), we can apply the dominated
convergence theorem, which (after dividing by t > 0) yields

1

t
Ey

[∫ t

0
λ(Ys)ds

]
≤ 1

t
Ex,y

[∫ t

0
c(Xξ

s , Ys)ds+K+ξ
+
t +K−ξ

−
t

]
+

1

t

(
Ex,y[V (Xξ

t , Yt)]− V (x, y)

)
.

Given that |V (x, y)| ≤ κ(1+ |x|) and that, for any admissible ξ, one has limt→∞
1
tEx,y[|Xξ

t |] =
0, we take limits as t ↑∞ in the equation above and we deduce (2.9).

To obtain the reverse inequality, consider the policy ξ⋆ ∈ B as in the statement of the
Theorem. As V ∈ C2(I) and I is open, L(X0,Y )V

m →L(X0,Y )V pointwise on any K ⊆ I ,
with L(X0,Y )V

m being uniformly bounded on K . By construction, we have both that ξ⋆

only activates when (Xξ⋆

s−, Ys−) ∈A+ ∪A− and that (Xξ⋆

s∧τn , Ys∧τn)s≥0 takes values only in
Kn ∩ I . Therefore, for ξ = ξ⋆, we can invoke the dominated convergence theorem in (2.15)
to send m→∞, to get

Ex,y[V (Xξ⋆

t∧τn , Yt∧τn)]− V (x, y)

= Ex,y

[∫ t∧τn

0
L(X0,Y )V (Xξ⋆

s , Ys)ds+

∫ t∧τn

0
Vx(Xs, Ys)dξ

⋆,c
s

+
∑

0<s≤t∧τn

(∫ ∆ξ⋆,+s

0
Vx(X

ξ⋆

s− + z,Ys)dz −
∫ ∆ξ⋆,−s

0
Vx(X

ξ⋆

s− − z,Ys)dz
)]

= Ex,y

[∫ t∧τn

0
λ(Ys)ds

]
−Ex,y

[∫ t∧τn

0
c(Xξ⋆

s , Ys)ds+K+ξ
⋆,+
t∧τn +K−ξ

⋆,−
t∧τn

]
,

where in the last line we used L(X0,Y )V (x, y) = λ(y)− c(x, y) for a.e. (x, y) ∈ I . By invok-
ing again the dominated convergence theorem, we take first the limit with respect to n→∞
and for t→∞, to deduce

(2.18)

lim
T→∞

1

T
Ey

[∫ T

0
λ(Yt)dt

]
= lim

T→∞

1

T
Ex,y

[∫ T

0
c(Xξ⋆

s , Ys)ds+K+ξ
⋆,+
T +K−ξ

⋆,−
T

]
≤ inf

ξ∈B
lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
,

where the last inequality follows from the admissibility of ξ⋆.

REMARK 2.1. Setting λ⋆(y) := limT→∞
1
T Ey[

∫ T
0 λ(Yt)dt], Theorem 2.1 gives that

inf
ξ∈B

lim
T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
= λ⋆(y).

This holds even in the case when Y is not recurrent. In the case that Y admits a stationary
distribution pY∞ on Rd, then

lim
T→∞

1

T
Ey

[∫ T

0
λ(Yt)dt

]
=

∫
Rd

λ(y)pY∞(dy) =: λ⋆,
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and thus λ⋆(y) ≡ λ⋆ is the value of the ergodic control problem, independently of y ∈ Rd.
We stress that this representation is not always true nor necessary, as Y does not need to
be ergodic for Theorem 2.1 to hold true. Indeed, provided that the pair (V,λ) satisfies ap-
propriate regularity and growth properties, the optimality of ξ⋆ and the representation of the
optimal payoff in terms of a value profile λ(y) follow just from analytical arguments applied
to a solution (V,λ) of equation (2.7).

REMARK 2.2. Even in the case that the pair (Xξ, Y ), ξ ∈ B, is an ergodic process, the
PDE in (2.7) is not the dynamic programming equation for the ergodic control problem,
which is instead given by
(2.19)
min{L(X0,Y )V (x, y)+c(x, y)−λ⋆,−V x(x, y)+K−, V x(x, y)+K+}= 0, (x, y) ∈R×Rd,

where λ⋆ is the value of the problem. As a consequence, the function V in Theorem 2.1 is not
the potential function of the problem and λ(y) is not the value of the problem. In particular,
being λ(y) dependent on y, we can not deduce uniqueness of the value λ⋆ from a solution to
the partial differential equation (2.7), so that the value of the control problem (2.3) is expected
to be dependent on the initial position y. Nevertheless, if the process Y admits a stationary
distribution, Theorem 2.1 provides a connection between any value profile λ(y) and the value
of the problem λ⋆, as noticed in Remark 2.1.

REMARK 2.3. We notice that the admissibility condition (2.2) is not new in literature
(see, e.g., [48, Equation (38)], [65, Equation (28)]). In these works, the authors prove that
any control whose cost functional is finite should satisfy (2.2), by relying on some explicit
growth assumptions on the instantaneous cost. At our level of generality this is not feasible,
since our instantaneous cost depends both on the controlled process and on the factor process
(which is not required to satisfy any integrability assumption). The price to pay is to restrict
to those strategies that satisfy the growth condition (2.2). Alternatively, one could be tempted
to consider as admissible those strategies such that limT→∞

1
T E[|V (Xξ

T , YT )|] = 0, where
(V,λ) is a solution to (2.7). This would be consistent with other works in literature (see,
e.g., [38, Equation 4.1] for the discounted setting). Nevertheless, as in general the solution
(V,λ) of (2.7) is not unique (see Theorems 2.2 and 2.3), this would make the class of controls
dependent of the particular pair (V,λ). Therefore, we opt for the admissibility condition (2.2).

2.2. The connection to a Dynkin game. In order to identify the pair (V,λ) in Theo-
rem 2.1, we associate an auxiliary Dynkin game to the original singular stochastic control
problem (2.3). Let (X̂, Ŷ ) = (X̂t, Ŷt)t≥0 be given by

(2.20)

{
dX̂t =

(
b(X̂t, Ŷt) + σσx(X̂t, Ŷt)

)
dt+ σ(X̂t, Ŷt)dWt, X̂0 = x ∈R,

dŶt =
(
η(Ŷt) + σx(X̂t, Ŷt)(ρζ)(Ŷt)

)
dt+ ζ(Ŷt)dBt, Ŷ0 = y ∈Rd,

whose generator is given by

(2.21) L(X̂0,Ŷ )f(x, y) =
(
b(x, y) + (σσx)(x, y)

)
fx(x, y) +

1

2
σ2(x, y)fxx(x, y)

+
(
η(y)+σx(x, y)(ρζ)(y)

)
∇yf(x, y)+

1

2
tr
(
a(y)∇2

yf(x, y)
)
+σ(x, y)(ρζ)(y)∇yfx(x, y)

for any f ∈C2(R×Rd). Note that, under Assumptions 2.1, (X̂x,y, Ŷ x,y) is a strong Markov
process. When needed, we stress the dependence of (X̂0, Ŷ ) on the initial point (x, y) ∈
R×Rd by writing (X̂x,y, Ŷ x,y). With a slight abuse of notation, we write Ex,y[·] to denote
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the conditional expectation given X̂0
0 = x and Ŷ0 = y. We introduce the auxiliary Dynkin

game through the (upper) value function

(2.22) U(x, y) := inf
ϑ≥0

sup
τ≥0

Ex,y

[∫ τ∧ϑ

0
exp

{∫ t

0
bx(X̂s, Ŷs)ds

}
cx(X̂t, Ŷt)dt

−1τ<ϑ exp

{∫ τ

0
bx(X̂s, Ŷs)ds

}
K+ + 1ϑ<τ exp

{∫ ϑ

0
bx(X̂s, Ŷs)ds

}
K−

]
,

where τ , ϑ are stopping times of filtration generated by the Brownian motions. The analysis
required to study the Dynkin game (2.22) is typically strongly dependent on the structure of
the underlying Markov process (X̂, Ŷ ) and of the instantaneous cost cx(x, y). Therefore, at
this stage, we limit ourselves to assume that the value function U(x, y) satisfies the follow-
ing properties, from which we are going to characterize an optimal control for the ergodic
problem (2.3).

HYPOTHESIS 2.2. There exist two measurable functions a+, a− : Rd →R such that:

(I) a+(y)< a−(y) and supy∈Rd a+(y)< infy∈Rd a−(y).
(II) It holds

cx(x, y) +K−bx(x, y)≥ 0, ∀(x, y) s.t. x≥ a−(y),(2.23)

cx(x, y)−K+bx(x, y)≤ 0, ∀(x, y) s.t. x≤ a+(y).(2.24)

(III) Setting C := {(x, y) ∈R×Rd : a+(y)< x< a−(y)}, U ∈C2(C)∩C(R×Rd) and
it solves the free-boundary problem
(2.25)

L(X̂0,Ŷ )U(x, y) + cx(x, y) + bx(x, y)U(x, y) = 0, if a+(y)< x< a−(y),

U(x, y) =−K+, if x≤ a+(y),

U(x, y) =K−, if x≥ a−(y).

for all (x, y) ∈R×Rd.

Hypothesis 2.2 should be read in the following way: the Dynkin game (2.22) should have
a saddle point (τ∗, ϑ∗), given by the entry times in the sets S+ := {(x, y) ∈ R × Rd : x ≤
a+(y)} and S− := {(x, y) ∈ R×Rd : x≥ a−(y)} respectively, so that the functions a± are
expected to be the boundaries of the continuation and stopping regions. If one could rely
on the semi-harmonic characterization of the Dynkin game’s value function (2.25), property
(II) would follow. We notice that property (II) is not uncommon in ergodic singular control
problems. In particular, in one-dimensional ergodic control problems, similar conditions are
imposed on the problem data to ensure that the optimal policy is of barrier type (see, e.g.,
[65, Equation (20)], [60, Assumption 2.7(ii)], [16, Assumption 5(ii)]). Finally, property (III)
would tell that U is a classical solution of the pointwise free-boundary problem (2.25). In
following Section 3 we will provide two examples in which Hypothesis 2.2 is satisfied.

We can heuristically derive the differential problem (2.25) for U starting from a pseudo-
potential function V , in the following way: Suppose that we are given a pair (V,λ) solution to
(2.7) and that there exist two measurable functions a± :Rd →R so that the set I in (2.8) can
be expressed as {(x, y) : a+(y)< x< a−(y)}. If V is regular enough, then Vx(x, y) satisfies
(2.25) with C = I and S± =A±. The state constraint in the inaction regions A+ and A− are
straightforward to see; as for the behavior of Vx in the action regions I , it is enough to take
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the x derivative of the term L(X0,Y )V + c+ λ= 0 to see that Vx should satisfy the PDE in
(2.25). This justifies both the presence of the new discount term bx(x, y) in (2.22) and (2.25)
and the disappearance of the value profile λ(y).

In the following Theorems 2.2 and 2.3, we revert this reasoning: we rigorously build a so-
lution (V,λ) to (2.7) starting from the value function U of the Dynkin game (2.22), provided
that Hypothesis 2.2 holds true and U enjoys some additional regularity.

THEOREM 2.2. Let U be the value function of the auxiliary Dynkin game (2.22), and
suppose that Hypothesis 2.2 holds true. Moreover, suppose that U ∈ W2,∞

loc (R × Rd). Let
α ∈ (supy a+(y), infy a−(y)) and set

V (x, y) :=

∫ x

α
U(x′, y)dx′,

(2.26)

λ(y) := c(α,y) +U(α,y)b(α,y) +
1

2
σ2(α,y)Ux(α,y) + σ(α,y)(ρζ)(y)Uy(α,y).(2.27)

Then, (V,λ) is a solution to (2.7). In addition, suppose that V ∈ C2(C), (λ(Yt))t∈[0,T ] is
dP⊗ dt integrable for any T > 0, and that there exists ξ⋆ ∈ B such that, for almost all t≥ 0,

(2.28) (Xξ⋆

t , Yt) ∈ {(x, y) : a+(y)≤ x≤ a−(y)},

ξ⋆,+t =

∫
[0,t]

1Xξ⋆
s ≤a+(Ys)

dξ⋆,+s , ξ⋆,−t =

∫
[0,t]

1Xξ⋆
s ≥a−(Ys)

dξ⋆,−s ,

Px,y-a.s. Then, ξ⋆ is optimal and it holds
(2.29)

lim
T→∞

1

T
Ey

[∫ T

0
λ(Yt)dt

]
= inf

ξ∈B
lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
.

PROOF. We notice that, by choosing either ϑ = 0 or τ = 0 in the functional appear-
ing in (2.22), we have −K+ ≤ U(x, y) ≤ K− for all (x, y) ∈ R × Rd, so that V has
at most linear growth in x uniformly in y. We notice that V ∈ W2,∞

loc (R × Rd) as so
does U . By construction, Vx(x, y) = U(x, y), Vxx(x, y) = Ux(x, y), Vxyi

(x, y) = Uyi
(x, y),

Vyi
(x, y) =

∫ x
α Uyi

(x′, y)dx′ and Vyiyj
(x, y) =

∫ x
α Uyiyj

(x′, y)dx′ for a.e. (x, y) ∈ R × Rd,
where derivatives are to be understood in the weak sense. Fix now (x, y) ∈R×Rd. As every
term admits at least a weak derivative, Lebesgue differentiation theorem yield

L(X0,Y )V (x, y) + c(x, y)

=
1

2
σ2(x, y)Ux(x, y) + b(x, y)U(x, y) + σ(x, y)(ρζ)(y)∇yU(x, y)

+ η(y)∇yV (x, y) +
1

2
tr
(
a(y)∇2

yV (x, y)
)
+ c(x, y)

=

∫ x

α

∂

∂z

[
1

2
σ2(z, y)Ux(z, y) + b(z, y)U(z, y) + σ(z, y)(ρζ)(y)∇yU(z, y) + c(z, y)

]
dz

+

∫ x

α

(
η(y)∇yU(z, y) +

1

2
tr
(
a(y)∇2

yU(z, y)
))

dz

+U(α,y)b(α,y) +
1

2
σ2(α,y)Ux(α,y) + σ(α,y)(ρζ)(y)∇yU(α,y) + c(α,y)
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=

∫ x

α

(
L(X̂0,Ŷ )U(z, y) + bx(z, y)U(z, y) + cx(z, y)

)
dz + λ(y),

where in the last line we used the definition of λ(y) in (2.27). Thus, we get

(2.30)

L(X0,Y )V (x, y) + c(x, y)− λ(y)

=−
∫ α

a+(y)

(
L(X̂0,Ŷ )U(z, y) + bx(z, y)U(z, y) + cx(z, y)

)
dz

+

∫ x

a+(y)

(
L(X̂0,Ŷ )U(z, y) + bx(z, y)U(z, y) + cx(z, y)

)
dz︸ ︷︷ ︸

=:I(x,y)

= I(x, y),

as the first integral is equal to 0 for any y ∈Rd, using (2.25) upon noticing that [a+(y), α]⊆
[a+(y), a−(y)] for any y ∈ Rd. By the same reasoning, I(x, y) = 0 for all (x, y) such that
a+(y)≤ x≤ a−(y). Next, let us consider x≥ a−(y). As U(x, y)≡K− for any x≥ a−(y),
(2.23) implies that U(x, y) verifies
(2.31)
L(X̂0,Ŷ )U(x, y) + cx(x, y) + bx(x, y)U(x, y)≥ 0, for all (x, y) ∈R×Rd s.t. x≥ a−(y).

Then, equation (2.31) implies that I(x, y)≥ 0, if x≥ a−(y). Analogously, if x≤ a+(y), then
(2.23) implies that U(x, y) verifies
(2.32)
L(X̂0,Ŷ )U(x, y) + cx(x, y) + bx(x, y)U(x, y)≤ 0, for all (x, y) ∈R×Rd s.t. x≤ a+(y).

Equation (2.32) then entails that I(x, y)≥ 0, if x≤ a+(y). Therefore,

L(X0,Y )V (x, y) + c(x, y)− λ(y)≥ 0, for all (x, y) ∈R×Rd.

As Vx(x, y) = U(x, y), (2.25) gives that the derivative constraints

Vx(x, y) +K+ ≥ 0, K− − Vx(x, y)≥ 0, for all (x, y) ∈R×Rd,

are satisfied. Hence, (V,λ) solves (2.7). Moreover, we notice that the sets I , A+ and A−
defined by (2.8) are given by C, S+ and S− respectively. To conclude, we note that the
assumptions of Theorem 2.1 are verified. By assumption, V ∈C2(C), (λ(Yt))0≤t≤T is dP⊗
dt integrable, ξ⋆ is admissible. Moreover, as already noticed, V (x, y) has at most linear
growth in x uniformly in y and belongs to W2,∞

loc (R×Rd). Finally, y 7→ λ(y) is continuous,
as U ∈C1(R×Rd) by Sobolev embedding, and so it is locally bounded. Thus, Theorem 2.1
yields the optimality of the control ξ⋆ and the representation (2.29).

REMARK 2.4. The reader may wonder why this argument does not work directly for a
pair (V ,λ⋆) solution to (2.19), since the derivative V x of the potential function is expected
to satisfy the free-boundary problem (2.25) as well. The reason is given by the proof of
Theorem 2.2 itself, as relating L(X0,Y )V + c and L(X̂,Ŷ )U + bxU + cx leaves us with a
reminder term λ(y), dependent on y ∈ Rd, instead of a constant λ ∈ R, which implies that
the couple (V (x, y), λ(y)) (with V being given by (2.26)) satisfies the auxiliary (2.7) rather
than the dynamic programming equation (2.19).

In many interesting cases, it is not possible to verify U ∈W2,∞
loc (R×Rd). Therefore, the

theorem above is not directly applicable. Nevertheless, we can state a weaker version of
Theorem 2.2, which bypasses the need of having locally bounded second order derivatives.
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THEOREM 2.3. Let U be the value function of the auxiliary Dynkin game (2.22), and
suppose that Hypothesis 2.2 holds true. Moreover, suppose that U is so that L(X̂0,Ŷ )U ∈
L∞
loc(R×Rd). Let α ∈ (supy a+(y), infy a−(y)) and set

V (x, y) :=

∫ x

α
U(x′, y)dx′,

(2.33)

λ(y) := c(α,y) +U(α,y)b(α,y) +
1

2
σ2(α,y)Ux(α,y) + σ(α,y)(ρζ)(y)Uy(α,y).(2.34)

Suppose that V ∈W2,∞
loc (R×Rd), λ ∈ L∞

loc(Rd) and that it holds

(2.35) L(X0,Y )V (x, y) + c(x, y)−λ(y)

=

∫ x

a+(y)

(
L(X̂0,Ŷ )U(x′, y) + bx(x

′, y)U(x′, y) + cx(x
′, y)
)
dx′.

Then, (V,λ) is a solution to (2.7). In addition, suppose that V ∈ C2(C), (λ(Yt))t∈[0,T ] is
dP⊗ dt integrable for any T > 0, and that there exists ξ⋆ ∈ B such that, for almost all t≥ 0,

(2.36) (Xξ⋆

t , Yt) ∈ {(x, y) : a+(y)≤ x≤ a−(y)},

ξ⋆,+t =

∫
[0,t]

1Xξ⋆
s ≤a+(Ys)

dξ⋆,+s , ξ⋆,−t =

∫
[0,t]

1Xξ⋆
s ≥a−(Ys)

dξ⋆,−s ,

Px,y-a.s. Then, ξ⋆ is optimal and it holds
(2.37)

lim
T→∞

1

T
Ey

[∫ T

0
λ(Yt)dt

]
= inf

ξ∈B
lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
.

The proof is completely analogous to the proof of Theorem 2.2, once noticed that the right-
hand side of (2.35) is exactly the term I(x, y) defined in (2.30), and it is therefore omitted.
We just notice that, in the lower regularity framework of Theorem 2.3, we cannot obtain the
regularity of V from the one of U , so that equation (2.30) cannot be inferred. A situation like
this one may occur in many different situations. We provide a relevant example in Section
3.1.

2.3. Remarks on Theorems 2.2 and 2.3. We make a couple of remarks on Theorems 2.2
and 2.3. According to their statements, for any α in between the free-boundaries a+ and a−,
there exist a different solution (V,λ) to (2.7). This is not a surprise, as equation (2.7) is not the
dynamic programming equation for the potential, but instead a PDE for a pseudo-potential
function, as already noticed in Remark 2.2. Nevertheless, the optimal control ξ⋆ identified by
Theorems 2.2 and 2.3 is the same for any pair (V,λ): it is enough to notice that its definition
relies only on the free-boundaries of the variational inequality satisfied by the value function
U(x, y); thus, it is independent of the particular value α in the definition of (V,λ). This
observation has important consequences. Denote by λ(y;α) the value profile given by (2.27)
associated to α ∈ (supa+(y), inf a−(y)), in order to highlight the dependence on the level
α. As the optimal control ξ⋆ given by (2.28) is the same for any α, the verification Theorem
2.1 and, in particular, equations (2.9) and (2.10)), imply that
(2.38)

inf
ξ∈B

lim
T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t , Yt)dt+K+ξ
+
T +K−ξ

−
T

]
= lim

T→∞

1

T
Ey

[∫ T

0
λ(Yt;α)dt

]
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for any α ∈ (supy∈Rd a+(y), infy∈Rd a−(y)).
It is possible to characterize the difference between two value profiles in terms of the

derivatives with respect to y of the value function U . Indeed, let supa+(y) ≤ α1 < α2 ≤
inf a−(y). Upon noticing that the map α 7→ λ(y;α) is continuously differentiable for any
fixed y, standard computations yield
(2.39)
λ(y;α2)− λ(y;α1)

=

∫ α2

α1

∂

∂z

[
c(z, y) +U(z, y)b(z, y) +

1

2
σ2(z, y)Ux(z, y) + σ(z, y)(ρζ)(y)Uy(z, y)

]
dz

=−
∫ α2

α1

(
η(y)∇yU(z, y) +

1

2
tr
(
a(y)∇2

yU(z, y)
))

dz,

where we have added and subtracted η(y)∇yU(z, y) + 1
2 tr
(
a(y)∇2

yU(z, y)
)

and used the
fact that (z, y) ∈ C for any α1 ≤ z ≤ α2. Thus, the existence of different value profiles is only
due to the presence of the factor process Y .

Equations (2.38) and (2.39) allow to recover the usual representation of the value of the
problem in terms of the boundaries of the inaction region for one-dimensional singular con-
trol problems. Indeed, suppose that X0 is an ergodic diffusion and that the coefficients η
and ζ in (2.1) are constantly null. This amounts to consider the deterministic constant pro-
cess Yt = y appearing in the coefficients of Xξ and in the instantaneous cost as a fixed
deterministic parameter. In particular, this implies that the free-boundaries a±(y) depend on
y only parametrically, so that we can define (V,λ) in (2.26) and (2.27) by choosing any
α ∈ (a+(y), a−(y)). Equation (2.39) then implies

λ(y;α1) = λ(y;α2) ∀a+(y)≤ α1 ≤ α2 ≤ a−(y).

By continuity of λ(y;α) with respect to α, one gets
(2.40)
c(a−(y), y)+K−b(a−(y), y) = lim

α↑a−
λ(y;α) = lim

α↓a+

λ(y;α) = c(a+(y), y)−K+b(a+(y), y),

where we used the fact that U(a±(y), y) = ∓K± and Ux(a±(y), y) = 0 for any y ∈ Rd.
Equation (2.40) is well-known in literature, as it gives a relation between the value of the
problem λ(y) and the free-boundaries a±(y), to be used in the the guess-and-verify approach
to impose the smooth-fit condition on the potential function (see e.g. [2, pp. 5-6] and in
particular equation (2.16) therein).

3. Applications to inventory models. As applications of our results, we consider two
mean-reverting inventory models with stochastic mean-reversion level. In the following,
X = (Xξ

t )t≥0 is the net inventory process, which captures the difference between regular
and customer demands. The firm controls its inventory level by a process of bounded varia-
tion ξ = (ξ+, ξ−) ∈ B, possibly subject to further restrictions. Controls are exercised on the
net inventory process to maintain the inventory at desired positions. The dynamics of the
inventory process will be given by

(3.1) dXξ
t = (Yt − δXt)dt+ σdWt + dξ+t − dξ−t , Xξ

0 = x.

Here, δ > 0 is the depreciation rate and Y = (Yt)t≥0 is the mean-reversion level, which we
will be subject to further specifications. We note that positive and negative net-inventory
levels mean inventory and backlog, respectively.

Brownian models for the (net) inventory process are nowadays classical; see, e.g., the
review [70] and the references therein. The mean-reverting behavior of the (net) inventory
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process is assumed to be mean-reverting as in [13, 45, 63]; mean-reversion can be thought
of as an effect of deterioration (see [42, 75]). Finally, we note that the ergodic optimization
criterion has nowadays a long history in the inventory management literature (among others,
see [22, 43, 44, 63, 79, 83]).

The two models we consider below in Section 3.1 and 3.2 differ both in the dynamics of
mean reversion process Y , as well as in the information available to the firm. The model of
Section 3.1 features partial information, which we address by studying the associated full-
information (separated) problem. This will lead us to deal with a degenerate state process,
in that the generator of the underlying state process (X̂, Ŷ ) (2.20) of the auxiliary Dynkin
game is not uniformly elliptic. As a consequence, we will not be able to deduce the W2,∞

loc
regularity of the Dynkin game value function, and hence we will rely on Theorem 2.3 to
find an optimal control. In particular, we will show that the assumptions of Theorem 2.3 are
satisfied by introducing a proper transformation of the Dynkin game’s value function, which
will be used to show the regularity of the pseudo-potential function V in (2.33).

On the contrary, in Section 3.2, we deal with a non-degenerate problem, in the sense that
the generator of the state process (X̂, Ŷ ) of the Dynkin game is uniformly-elliptic. By relying
on the results of [18], we will show that U ∈W2,∞

loc , so that Theorem 2.2 can be applied to
build a solution (V,λ) of equation (2.7) and an optimal control ξ⋆ (2.28).

3.1. Inventory control with partially observable mean-reversion level. We here consider
an inventory management problem with unknown mean-reversion level. The setting is closely
related to the problem investigated in [34], with two major differences. Differently from [34],
the drift of the inventory process features an unobservable two-dimensional Markov chain
instead of an unobservable Bernoulli random variable, implying that the demand is not only
unobservable but it changes over time, at unobservable jump times. Most importantly, instead
of working under the discounted optimization criterion, we work with the ergodic one.

Let (Ω,F ,F = (Ft)t≥0,P) be a complete filtered probability space capturing all the un-
certainty of our setting. F denotes the full information filtration. Consider a real-valued F-
Brownian motion W , and let ϵ = (ϵt)t≥0 be a two-state Markov chain, with state space

E = {1,2} and rate transition matrix (or Q-matrix, see, e.g., [68])
[
−λ1 λ1

λ2 −λ2

]
, where

λ1, λ2 > 0. In particular, this implies (cf. [68, Theorem 2.8.2]) that, for all t≥ 0,

P(ϵt+∆t = j|ϵt = i) =

{
λi∆t+ o(∆t), j ̸= i,

1− λi∆t+ o(∆t), j = i,

as ∆t→ 0, uniformly in t. We assume that ϵ and W are independent.

Let m : E →R be equal to m1 if j = 1 and m2 if j = 2, with m1 >m2. Referring to (3.1),
we suppose that, for any ξ = (ξ+, ξ−) ∈ B, Yt =mϵt , so that the inventory process follows
the dynamics

(3.2) dXξ
t = (mϵt − δXξ

t )dt+ σdWt + dξ+t − dξ−t , Xξ
0− = x,

where δ and σ are positive constants.
Denote by X0 the solution of (3.2) with control ξ ≡ 0. The information filtration is given

by the completed natural filtration FX0

of the process X0. The set B of admissible controls
for the control problem under partial information is defined as the set of singular controls ξ
so that ξ is FX0

-adapted. Notice that the information filtration FX0

is strictly included in the
full information filtration F. In particular, the values of ϵ are not observable, and they can just
be inferred from the observation of X0.
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Let c : R → R be a continuous function and let K+, K− > 0. Then, the problem is to
determine

(3.3) inf
ξ∈B

lim
T→∞

1

T
Ex,y

[∫ T

0
c(Xξ

t )dt+K+ξ
+
T +K−ξ

−
T

]
,

where Ex,y[·] denotes the expectation under Px,y(·), which is the probability measure on

(Ω,F) under which Xξ
0− = x and ε0 has distribution

[
y

1− y

]
, for (x, y) ∈ R× [0,1]. More

precisely, Px,y(ε0 = 1) = y.
In Section 3.1.1, we will rely on classical results from filtering theory (see, e.g., [8, 62])

in order to reduce the problem to an equivalent two-dimensional full information stochastic
singular control problem, so that we are back in the setting of Section 2. Then, we will solve
the equivalent full information problem in Section 3.1.2.

We make the following assumptions on the instantaneous cost function c:

ASSUMPTION 3.1. The instantaneous cost function c : R → R belongs to C∞(R) and
it is strictly convex. Moreover, there exist constants p ≥ 2, α0, α1, α2 > 0 so that, for any
x ∈R, it holds

(3.4)

0≤ c(x)≤ α0(1 + |x|p),

|c′(x)| ≤ α1(1 + |x|p−1),

|c′′(x)| ≤ α2(1 + |x|p−2).

Finally, limx→±∞ c′(x) =±∞.

The property c ∈ C∞(R) will be later needed in order to apply the regularity results of
[72] in Lemma 3.6. Notice that Assumptions 3.1 include the benchmark case of the quadratic
cost c(x) = (x− x̄)2, where x̄ ∈R is a fixed constant, target level of the inventory.

3.1.1. Derivation of the separated problem. In this section, we derive the so-called sepa-
rated problem (for a reference, see the pioneer work [82]) for the partial information singular
control problem. In this way, we reduce Problem (3.3) to a complete information setting.

We consider the filter Π= (Πt)t≥0, i.e. the process defined by

Πt = P(ϵt = 1|FX0

t ) = E[1{ϵt=1}|FX0

t ].

It is well-known that Π provides the best mean-square estimate of the law of ϵ on the basis
of the observation filtration FX0

. That is, for any f : E →R, it holds

E[fϵt |FX0

t ] = Πtf1 + (1−Πt)f2 =: f(Πt).

By [5, Exercise 3.27] (see also [62, Theorem 9.1]), Π is the unique strong solution of the
following stochastic differential equations:

dΠt = (λ2 − (λ1 + λ2)Πt)dt+
m1 −m2

σ
Πt(1−Πt)dBt, Π0 = y,

where y = P(ϵ0 = 1) ∈ [0,1] is the prior belief on the initial state of the process and B =
(Bt)t≥0 is the innovation process, defined by

(3.5) Bt :=Wt −
∫ t

0
σ−1 (m(Πs)−mϵs)ds, t≥ 0.
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In particular, B is an FX0

-Brownian motion. In the following, we set γ := m1−m2

σ , which is
strictly positive as m1 >m2 by assumption. The process X0 is an Itô-process with respect to
the innovation process so that the dynamics of the pair (X0,Π) are coupled by the equations

(3.6)

{
dX0

t = (m(Πt)− δX0
t )dt+ σdBt, X0

0 = x,

dΠt = (λ2 − (λ1 + λ2)Πt)dt+ γΠt(1−Πt)dBt, Π0 = y.

As Π is bounded by definition, the system of stochastic differential equations (3.6) admits
a pathwise unique solution. Moreover, by continuously extending the coefficients of the dif-
fusion Π to constants outside of [0,1], Π can be regarded as the solution of a stochastic
differential equation with bounded Lipschitz coefficients, so that [52, Theorem 4.20] implies
that the pair (X0,Π) is strong Markov. We regard the state space of (X0,Π) to be R× (0,1).
Indeed, notice that the boundary points 0 and 1 are entrance-not-exit for the process Π, as
can be shown by applying Feller’s test for explosion (see [52, Section 5.5]). In other words,
Π can start from y = 0 or y = 1, but it cannot reach any of these points in finite time. Hence,
in our subsequent analysis, we shall exclude the values y = 0 of y = 1 from our analysis.

By using the filter Π, we introduce the following problem: Find an optimal control ξ⋆ ∈ B
such that, for any (x, y) ∈R× (0,1),

(3.7) inf
ξ∈B

lim
T→∞

1

T
Ex,y

[∫ T

0
c(Xξ

t )dt+K+ξ
+
T +K−ξ

−
T

]
= lim

T→∞

1

T
Ex,y

[∫ T

0
c(Xξ⋆

t )dt+K+ξ
⋆,+
T +K−ξ

⋆,−
T

]
under the constraint

(3.8)

{
dXξ

t = (m(Πt)− δXξ
t )dt+ σdBt + dξt, Xξ

0− = x,

dΠt = (λ2 − (λ1 + λ2)Πt)dt+ γΠt(1−Πt)dBt, Π0 = y.

Thanks to the strong uniqueness of the solutions to (3.2) and (3.8), it is standard to see
that (3.3) under (3.2) is equivalent to (3.7) under (3.8) (see, e.g., [14, Proposition 3.11],
for a similar setting). According to such an equivalence, we now aim at solving the cost
minimization problem (3.7) under the constraint (3.8).

By using the notation of Section 2, we have that the factor process Y is now one-
dimensional and it is given by the filter Π. The coefficient (η, ζ) are given by

η(y) := (λ2 − (λ1 + λ2)y), ζ(y) := γy(1− y).

The coefficients (b, σ) are given by

b(x, y) :=m2 + (m1 −m2)y− δx, σ(x, y) := σ > 0.

The processes X and Y are run by the same Brownian motion B, given by the innovation
process (3.5), so that the correlation is ρ= 1. We notice that Assumptions 2.1 are satisfied.

REMARK 3.1. The choice of singular controls adapted to FX0

, i.e., to the filtration gen-
erated by the uncontrolled observed process may seem rather odd. Indeed, the standard re-
quirement is that controls are adapted with respect to the observed process, which in our case
is Xξ . However, since this process is controlled, the available information changes with the
control itself, i.e., the issue of circularity of information arises. From a technical point of view
this poses an obstacle to the formulation of our control problem, which is bypassed precisely
by choosing controls adapted to FX0

, in the original problem.
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This turns out to be equivalent to selecting controls adapted to FB , as the two filtrations
coincide (cf. [61, p. 31]). Indeed, on the one hand, the innovation process B is by construction
an FX0

-Wiener process, and hence FB ⊆ FX0

; on the other hand, the system of SDEs (3.8)
with ξ ≡ 0, which is driven by B alone and where Π is FX0

-adapted by construction, ad-
mits a unique pathwise strong solution, and hence FX0 ⊆ FB . Therefore, in our model the
controller is able to observe the noise acting on the fully observable system (3.8), given by
the innovation process. In particular, we see that admissible singular controls in B are also
FB-adapted. The equivalence of the two filtrations reveals that the formulation of the sepa-
rated problem is the standard one for a singular control problem under complete observation,
in which we choose controls to be adapted to the noise driving the system. In this context
the noise is the innovation, which represents the new information content that we can extract
from the observation as time passes.

Note that, differently from our model, whenever the observation is not directly controlled,
but the control acts indirectly on it through the signal process, it is possible to use a change
of measure technique to solve this issue, see, e.g., [8, Chapter 8]. We can also observe that,
while the (completed) natural filtration generated by Xξ is contained in FX0

, for any possible
choice of admissible ξ, the converse may not be true in general. This property could be
verified by filtration FXξ⋆

, with ξ⋆ the optimal control, but it needs to be checked a posteriori.

3.1.2. The auxiliary Dynkin game for the separated problem. As described in Section
2, the first step to solve the ergodic control problem (3.7) (and thus the original one (3.3))
is to identify the auxiliary Dynkin game (2.22) and to show that Hypothesis 2.2 holds true.
We first establish that the auxiliary Dynkin game has a value and that there exists a saddle
point (τ∗, ϑ∗), which is characterized in terms of the functions a− and a+, the so called free-
boundaries of the PDE satisfied by U . Then, we show that Hypothesis 2.2 is satisfied. In
addition, we show that U is C1 over the whole state space.

As the volatility of X0 is constant, the underlying Markov process of the Dynkin game
(X̂0, Ŷ ) defined by (2.20) is given by (X0,Π) itself. To ease the notation, we set O = R×
(0,1) to denote the state space of (X0,Π). When needed, in order to simplify the notation,
we write (Xx,y,Πx,y) to stress the dependence on the initial position (x, y) ∈O.

The Dynkin game is given by

(3.9) U(x, y) := inf
τ≥0

sup
ϑ≥0

E
[∫ τ∧ϑ

0
e−δtc′(Xx,y

t )dt+K−e
−δτ1τ<ϑ −K+e

−δϑ1ϑ<τ

]
,

where τ , ϑ are stopping times of the filtration generated by the innovation process B in (3.5).
Occasionally, we will use the notation

(3.10) M(x,y)(τ,ϑ) := E
[∫ τ∧ϑ

0
e−δtc′(Xx,y

t )dt+K−e
−δτ1τ<ϑ −K+e

−δϑ1ϑ<τ

]
,

so that U(x, y) = infτ supϑM(x,y)(τ,ϑ). For later use, we state a simple integrability result,
whose proof is omitted.

LEMMA 3.1. Let (Xx,y,Πx,y) the solution of equations (3.6) starting from (x, y) ∈ O.
Then, Xx,y has the following explicit representation:

(3.11) X0
t = e−δt

(
x+

∫ t

0
eδsm(Πs)ds+ σ

∫ t

0
eδsdBs

)
.
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Moreover, for any q > 0 there exists a positive constant κ, dependent of q, m1, m2, δ and σ
but independent of (x, y), such that

(3.12) E
[∫ ∞

0
e−δt|Xx,y

t |qdt
]
≤ κ(1 + |x|q).

In particular, Lemma 3.1 and Assumptions 3.1 imply that M(x,y)(τ,ϑ) is finite for any pair
of stopping times (τ,ϑ).

The next lemma shows that the Dynkin game defined by (3.9) has a value and both the
sup-player and the inf-player have an optimal stopping strategy. As a consequence, we get
a first characterization of the optimal stopping times and we deduce that we can exchange
supremum and infimum in the definition of U . We define the regions

(3.13)

S+ := {(x, y) ∈O : U(x, y)≤−K+},

S− := {(x, y) ∈O : U(x, y)≥K−},

C :=O \ (S+ ∪ S−) = {(x, y) ∈O : −K+ <U(x, y)<K−}.

LEMMA 3.2. The Dynkin game (3.9) has a value. Moreover, the stopping times

(3.14) τ∗ := inf{t≥ 0 : (X0
t ,Πt) ∈ S−}, ϑ∗ := inf{t≥ 0 : (X0

t ,Πt) ∈ S+}

are optimal strategies for the inf-player and the sup-player, respectively.

PROOF. The proof consists in an application of [30, Theorem 2.1]. Consider the following
functions

(3.15)
Φ(x, y) := E

[∫ ∞

0
e−δsc′(Xx,y

s )ds

]
, G1(t, x, y) := e−δt(−K+ −Φ(x, y)),

G2(t, x, y) := e−δt(K− −Φ(x, y)), G3(t, x, y) :=−e−δtΦ(x, y).

Notice that Φ is measurable and finite by Lemma 3.1, and thus so are Gi for any i= 1,2,3.
Moreover, G1 ≤ G3 ≤ G2. Denote by (Xt,x,y

s ,Πt,x,y
s )s≥t the solution of (3.6) starting from

(x, y) ∈O at time t≥ 0 and define the auxiliary Dynkin game

(3.16) ũ(t, x, y) := inf
τ
sup
ϑ

E
[
1τ<ϑG2(t+ τ,Xt,x,y

t+τ ,Πt,x,y
t+τ )

+ 1ϑ<τG1(t+ ϑ,Xt,x,y
t+ϑ ,Πt,x,y

t+ϑ ) + 1τ=ϑG3(t+ τ,Xt,x,y
t+τ ,Πt,x,y

t+τ )
]
.

Notice that the process Z = (t,Xx,y
t ,Πx,y

t )t≥0 is continuous and strong-Markov. Moreover,
by exploiting Lemma 3.1, the explicit representation of Xx,y in (3.11) and the boundedness
of Πy , we have

(3.17) E[sup
t≥0

|G1(t,X
x,y
t ,Πx,y

t )|]≤K+ +E[sup
t≥0

|e−δtΦ(Xx,y
t ,Πx,y

t )|]

≤ κ(1 +E[sup
t≥0

e−δt|Xx,y
t |p−1])<∞,

and analogously for G2 and G3. Hence, by [30, Theorem 2.1], the stopping times

τ∗ = inf{s≥ 0 : ũ(t+ s,Xx,y
t+s,Π

x,y
t+s) =G2(t+ s,Xx,y

t+s,Π
x,y
t+s)},

ϑ∗ = inf{s≥ 0 : ũ(t+ s,Xx,y
t+s,Π

x,y
t+s) =G1(t+ s,Xx,y

t+s,Π
x,y
t+s)}
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are a saddle point for the Dynkin game (3.16). We now prove that (τ∗, ϑ∗) are optimal for the
game with value U(x, y) as well. We start by noticing that (X0,x,y

s ,Π0,x,y
s ) = (Xx,y

s ,Πx,y
s )

for any s≥ 0 and that ũ(t, x, y) = e−δtu(x, y), where

u(x, y) = inf
τ
sup
ϑ

E
[
1τ<ϑG2(τ,X

x,y
τ ,Πx,y

τ ) + 1ϑ<τG1(ϑ,X
x,y
ϑ ,Πx,y

ϑ )

+ 1τ=ϑG3(τ,X
x,y
τ ,Πx,y

τ )
]
.

Next, we notice that, by the strong Markov property, it holds for any pair (τ,ϑ)

(3.18) M(x,y)(τ,ϑ) = Φ(x, y) +E
[
1τ<ϑG2(τ,X

x,y
τ ,Πx,y

τ ) + 1ϑ<τG1(ϑ,X
x,y
ϑ ,Πx,y

ϑ )

+ 1τ=ϑG3(τ,X
x,y
τ ,Πx,y

τ )
]
.

Finally, by taking the infimum over τ and supremum over ϑ in (3.18), we deduce U(x, y) =
Φ(x, y) + u(x, y). This implies that (τ∗, ϑ∗) can be expressed as in (3.14).

The second step is to prove the following preliminary regularity properties of U :

LEMMA 3.3.

(i) U is jointly continuous in O.
(ii) For any fixed y ∈ (0,1), x 7→ U(x, y) is non-decreasing and, for any fixed x ∈ R, the

map y 7→ U(x, y) is non-decreasing.

PROOF. Let ((xn, yn))n≥1 be a sequence in O converging to (x, y) ∈O. Fix ε > 0 and let
ϑ̄ so that

(3.19) U(x, y) = inf
τ
sup
ϑ

M(x,y)(τ,ϑ) = sup
ϑ

inf
τ
M(x,y)(τ,ϑ)

≤ inf
τ
M(x,y)(τ, ϑ̄)+ε≤M(x,y)(τ, ϑ̄)+ε

for any τ , where second equality holds by Lemma 3.2. Analogously, let τn so that
(3.20)
U(xn, yn) = inf

τ
sup
ϑ

M(xn,yn)(τ,ϑ)≥ sup
ϑ

M(xn,yn)(τ
n, ϑ)− ε≥M(xn,yn)(τ

n, ϑ)− ε ∀ϑ.

By taking the differences, we get

U(x, y)−U(xn, yn)≤M(x,y)(τ
n, ϑ̄)−M(xn,yn)(τ

n, ϑ̄)+2ε

= E

[∫ τn∧ϑ̄

0
e−δt

(
c′(Xx,y

t )− c′(Xxn,yn

t )
)
dt

]
+2ε

≤ E
[∫ ∞

0
e−δt

∣∣c′(Xx,y
t )− c′(Xxn,yn

t )
∣∣dt]+2ε

By the same reasoning, exchanging the roles of (x, y) and (xn, yn) in (3.19) and (3.20), we
bound the absolute value of the difference by

|U(x, y)−U(xn, yn)| ≤ E
[∫ ∞

0
e−δt

∣∣c′(Xx,y
t )− c′(Xxn,yn

t )
∣∣dt]+2ε.

Given that the coefficients of the pair (X0,Π) are smooth functions with bounded derivatives,
the flow (x, y) 7→ (Xx,y

t ,Πx,y
t ) is a diffeomorphism for every t > 0 by [76, Theorem 13.8]. As
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c′ is continuous as well, we deduce that the integrand converges to 0, P-a.s., for any t≥ 0. By
Lemma 3.1, we invoke the dominated convergence theorem to get |U(x, y)− U(xn, yn)| ≤
2ε. Since ε is arbitrary, we get point (i).

As for point (ii), fix y ∈ (0,1), let x1 ≤ x2. By equation (3.11), it holds Xx1,y
t ≤Xx2,y

t ,
for any t ≥ 0, P-a.s. Since c′ is strictly increasing, c′(Xx1,y

t ) ≤ c′(Xx2,y
t ), for any t ≥ 0, P-

a.s., which implies that, for any (τ,ϑ), M(x1,y)(τ,ϑ)≤M(x2,y)(τ,ϑ), and so the conclusion
holds for U(x, y) as well. Fix now x ∈R+, 0≤ y1 ≤ y2 ≤ 1. As (3.6) admits a unique strong
solution, by [47, Theorem 1.1] the map y 7→ Πx,y

t is non-decreasing for any t ≥ 0, P, a.s.
Since m1 > m2 by assumption, the map y 7→m(Πx,y

t ) is increasing as well, and therefore
(3.11) implies that y 7→Xx,y

t is increasing for every t≥ 0 P-a.s. Thanks to the monotonicity
of c′, we get (ii).

We define the following functions

(3.21) a−(y) := inf{x ∈R : U(x, y)≥K−}, a+(y) := sup{x ∈R : U(x, y)≤−K+},

with the conventions sup∅=−∞, inf ∅=+∞. Then, by continuity and monotonicity of U
and exploiting the bounds −K+ ≤ U(x, y)≤K−, the sets S± and C defined in (3.13) can be
expressed in terms of a± as

(3.22)
S+ = {(x, y) ∈O : x≤ a+(y)}, S− = {(x, y) ∈O : x≥ a−(y)},

C = {(x, y) ∈O : a+(y)< x< a−(y)}.

LEMMA 3.4.

(i) The maps a±(y) are non-increasing. Moreover, a− is right-continuous and a+ is left-
continuous.

(ii) For any y ∈ (0,1), it holds a+(y)≤ (c′)−1(−K+δ)< (c′)−1(K−δ)≤ a−(y).
(iii) There exist two finite values a+, a− so that −∞< a+ ≤ a+(y) and a−(y)≤ a− <+∞.

PROOF. Point (i) follows from definition of a± and the monotonicity and continuity of U ,
ensured by point (ii) of Lemma 3.3. As for point (ii), consider the processes(

e−δ(t∧ϑ∗)U(Xx,y
t∧ϑ∗ ,Π

x,y
t∧ϑ∗) +

∫ t∧ϑ∗

0
e−δsc′(Xx,y

s )ds
)
t≥0

,(3.23)

(
e−δ(t∧τ∗)U(Xx,y

t∧τ∗ ,Π
x,y
t∧τ∗) +

∫ t∧τ∗

0
e−δsc′(Xx,y

s )ds
)
t≥0

,(3.24)

which, by [71, Theorem 2.1], are a sub-martingale and super-martingale respectively. Let
now (xo, yo) ∈ S−. By using the sub-martingale property of the process (3.23) and the bound
U(x, y)≤K−, we deduce

K− = U(xo, yo)≤ E
[
e−δ(t∧ϑ∗)U(Xxo,yo

t∧ϑ∗ ,Π
xo,yo

t∧ϑ∗ ) +

∫ t∧ϑ∗

0
e−δsc′(Xxo,yo

s )ds

]
≤E
[
K−e

−δ(t∧ϑ∗) +

∫ t∧ϑ∗

0
e−δsc′(Xxo,yo

s )ds

]
≤K−+E

[∫ t∧ϑ∗

0
e−δs(c′(Xxo,yo

s )−K−δ)ds

]
for any t≥ 0. This implies
(3.25)

0≤ lim
t→0

1

t
E
[∫ t

0
e−δs(c′(Xxo,yo

s )−K−δ)1s<ϑ∗ds

]
= c′(xo)−K−δ, ∀(xo, yo) ∈ S−,
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where we used dominated convergence theorem, by virtue of Lemma 3.1. Let (c′)−1 be the
inverse of c′, which exists as c is strictly convex by Assumption 3.1. Then, (3.25) implies

a−(y)≥ inf{x ∈R : c′(x)≥K−δ}= inf{x ∈R : x≥ (c′)−1(K−δ)}= (c′)−1(K−δ).

Analogously, for any (xo, yo) ∈ S+, by relying on the super-martingale property of the pro-
cess (3.24), we deduce

(3.26) 0≥ c′(xo)+K+δ, ∀(xo, yo) ∈ S+,

which in turns implies a+(y)≤(c′)−1(−δK+). Moreover, by using again the strict convexity
of c, we deduce (c′)−1(−δK+)< (c′)−1(δK−). This proves point (ii).

To prove point (iii), let X and X be, respectively, the solutions of

dXx
t = (m2 − δXx

t )dt+ σdBt, Xx
0 = x,(3.27)

dX
x
t = (m1 − δX

x
t )dt+ σdBt, X

x
0 = x,(3.28)

and notice that, since m2 ≤m(Πt)≤m1, by [47, Theorem 1.1] we have Xx
t ≤Xx,y

t ≤X
x
t

for every t≥ 0 P-a.s. for any (x, y) ∈O. Consider the following Dynkin games:

u(x) := inf
τ
sup
ϑ

E
[∫ τ∧ϑ

0
e−δtc′(Xx

t )dt+K−e
−δτ1τ<ϑ −K+e

−δϑ1ϑ<τ

]
,

u(x) := inf
τ
sup
ϑ

E
[∫ τ∧ϑ

0
e−δtc′(X

x
t )dt+K−e

−δτ1τ<ϑ −K+e
−δϑ1ϑ<τ

]
.

By the same reasoning as in Lemmata 3.2 and 3.3, it is possible to prove that u and u are
continuous and non-decreasing. Moreover, there exist two saddle points (τ ,ϑ) and (τ ,ϑ) for
u and u, respectively, given by

τ := inf{t≥ 0 : u(Xt)≥K−}, ϑ := inf{t≥ 0 : u(Xt)≤−K+},

τ := inf{t≥ 0 : u(Xt)≥K−}, ϑ := inf{t≥ 0 : u(Xt)≤−K+}.

We focus on τ and ϑ. As for U(x, y), set

a+ := sup{x ∈R : u(x)≤−K+}, a− := inf{x ∈R : u(x)≥K−},

so that τ = inf{t ≥ 0 : Xt ≥ a−} and ϑ = inf{t ≥ 0 : Xt ≤ a+}. Notice that, since c′ is
strictly increasing, it holds u(x)≤ U(x, y)≤ u(x) for all (x, y) ∈O, which implies that

a+(y) = sup{x ∈R : U(x, y)≤−K+} ≥ sup{x ∈R : u(x)≤−K+}= a+.

To prove a+ >−∞, we show {x ∈R : u(x)≤−K+} ≠ ∅ is not empty. Suppose not. Then,
for any (x, y) ∈O, it holds −K+ < u(x), which implies that ϑ=∞ P-a.s. Therefore,

−K+ < u(x) = inf
τ
E
[∫ τ

0
e−δtc′(Xx

t )dt−K−e
−δτ

]
≤ E

[∫ ∞

0
e−δtc′(X

x
t )dt

]
= E

[∫ ∞

0
e−δtc′(x+X

0
t )dt

]
,

for all x ∈ R, where X
0 denotes the solution of (3.28) starting from x = 0 at t = 0. As c′

is strictly increasing and limx→−∞ c′(x) =−∞ by Assumptions 3.1, the monotone conver-
gence theorem yields
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−K+ < lim
x→−∞

E
[∫ ∞

0
e−δtc′(e−δtx+X

0
t )dt

]
= E

[∫ ∞

0
e−δt lim

x→−∞

(
c′(e−δtx+X

0
t )
)
dt

]
=−∞,

thus getting a contradiction. The proof of a− <+∞ is dealt analogously.

Observe that Lemma 3.4 implies that points (I) and (II) in Hypothesis 2.2 are satisfied by
a±(y). We now show that U solves the free-boundary problem (2.25) and that U ∈ C2(C),
thus showing that point (III) in Hypothesis (2.2) holds true. On top of those properties, we will
also prove that U ∈C1(O), making an important step towards the application of Theorem 2.3.

We notice that the generator L(X0,Π) is degenerate, as a result of the fact that the diffusions
X0 and Π are run by the same Brownian motion B. Thus, classical PDE interior results based
on Schauder’s estimates do not hold. Instead, we will show that L(X0,Π) is hypoelliptic (see,
e.g., [69, Section 2.3]), allowing us to deduce the regularity of U in the open set C from [72,
Corollary 7]. This is accomplished in the following way: By a proper change of variables,
we identify a diffeomorphic parabolic differential operator L(X0,Z), defined as the generator
of a diffusion (X0,Z) whose second component Z is a process of finite variation. Then,
borrowing ideas from Ernst and Peskir in [33] (see also [32, 41]), we verify that L(X0,Z)

satisfies Hörmander’s condition, ensuring the hypoellipticity of the operator L(X0,Π) itself.
To show that U ∈ C1(O) (global smooth-fit property), in Lemma 3.7 we rely on the

parabolic Hörmander’s condition to show that (X0,Π) is strong Feller, similarly to [32,
Proposition 4]. Then, we prove in Lemma 3.4 that the boundary points of S± are proba-
bilistically regular for their complement sets relatively to (X0,Π). Thanks to these fine tech-
nical results, we are able to prove in Theorem 3.9 that the C1-regularity of U extends to the
boundary of C.

In order to prove the global smooth-fit property in Theorem 3.9, we will need the following
technical assumption on the parameters, which will be in force throughout the rest of the
section:

ASSUMPTION 3.2. Consider p≥ 2 given in Assumption 3.1. The parameters satisfy the
following relation: if p > 2, then
(3.29)

δ >
(
γ2 − (λ1 + λ2)

)
∨
(
6γ2 − 2(λ1 + λ2)

)
∨
(
2(
p− 1

p
)(2p−3)γ2−2

p− 1

p
(λ1+λ2)

)
∨0.

If p= 2, then

(3.30) δ >
(
γ2 − (λ1 + λ2)

)
∨ 0.

Assumption 3.2 ensures that the discount factor in the auxiliary Dynkin game is large
enough to ensure uniform estimates on the the first order derivatives.

The following Lemma provides the change of variable which transforms (X0,Π) into the
process (X0,Z), with Z of finite variation. As the proof is a straightforward application of
Itô’s formula, we omit it.

LEMMA 3.5. For any (x, y) ∈O, consider the process

(3.31) Zt :=
σ

γ
log

(
Πt

1−Πt

)
−X0

t .
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Then, the pair (X0,Z) satisfies the equation

(3.32)


dX0

t = µ(X0
t ,Zt)dt+ σdBt, X0

0 = x,

dZt = q(X0
t ,Zt)dt, Z0 = z =

σ

γ
log

(
y

1− y

)
− x,

where (µ, q) :R2 →R are defined by

(3.33)

µ(x, z) =m

(
e

γ

σ
(z+x)

1 + e
γ

σ
(z+x)

)
− δx,

q(x, z) = σγ

(
e

γ

σ
(z+x)

1 + e
γ

σ
(z+x)

− 1

2

)
+

σ

γ
(1 + e−

γ

σ
(z+x))(λ2 − λ1e

γ

σ
(z+x))

−m

(
e

γ

σ
(z+x)

1 + e
γ

σ
(z+x)

)
+ δx.

The infinitesimal generator L(X0,Z) of (X0,Z) is of parabolic type, and it is given by

(3.34) L(X0,Z)f(x, z) = q(x, z)fz(x, z) +
1

2
σ2fxx(x, z) + µ(x, z)fx(x, z),

for any f ∈C2,1(R2). Observe that the operators L(X0,Π) and L(X0,Z) are C∞-diffeomorphic
in O. Indeed, consider the diffeomorphism Ψ :R×R→R× (0,1)

(3.35) (x, y) = Ψ((x, z)) =

(
x,

e
γ

σ
(z+x)

1 + e
γ

σ
(z+x)

)
,

whose inverse Ψ−1 :R× (0,1)→R×R is given by

(x, z) = Ψ−1 ((x, y)) =

(
x,

σ

γ
log
( y

1− y

)
− x

)
.

Occasionally, we will write (x, y(x, z)) instead of Ψ(x, z) and (x, z(x, y)) instead of
Ψ−1(x, y). By construction, Ψ provides the C∞-diffeomorphism between L(X0,Π) and
L(X0,Z).

REMARK 3.2. For later use, we define the likelihood ratio process Φ= (Φt)t≥0 as Φt =
Πt

1−Πt
. By Itô’s formula, the transformed process (X0,Φ) satisfies the following equations:

(3.36)


dX0

t =

[
m

(
Φt

1 +Φt

)
− δX0

t

]
dt+ σdBt, X0

0 = x,

dΦt =

[
(1 +Φt)(λ2 − λ1Φt) + γ2

Φ2
t

1 +Φt

]
dt+ γΦtdBt, Φ0 = φ=

y

1− y
.

Notice that the map y 7→ φ(y) := y
1−y is a diffemorphism from (0,1) to R+, with inverse

y(φ) = φ
1+φ . In particular, the process Zt can be defined starting from (X0,Φ) by setting

Zt =
σ

γ
log (Φt)−X0

t .

This equivalent representation will be used extensively in the following.

LEMMA 3.6. U ∈C2(C) and it satisfies (2.25).
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PROOF. U(x, y) satisfies the constraints on S± by definition. We deal now with the be-
havior of U in C.

We recall that the flow (x, y) 7→ (Xx,y
t ,Πx,y

t ) is a diffeomorphism for every t > 0 by [76,
Theorem 13.8]. Then, for any f ∈ C∞

c (O) and t > 0, the map (x, y) 7→ E[f(Xx,y
t ,Πx,y

t )] is
C2
b(O). Therefore, Assumption (3.5) in [72] is satisfied, which ensures by Corollary 5 therein

that U satisfies

(3.37) L(X0,Π)U(x, y)− δU(x, y) + c′(x) = 0

inside C, where the derivatives appearing in (3.37) are to be understood in the sense of
Schwartz distribution. To improve the regularity of U and to show that U satisfies (3.37)
in the classical sense in C, we show that the operator L(X0,Z) defined by (3.34) is hypoellip-
tic over R2. As L(X0,Π) and L(X0,Z) are C∞-diffeomorphic on O, this implies that L(X0,Π)

is hypoelliptic over O. Given that c′ ∈ C∞(R), [72, Corollary 7] yields that the solution
U ∈C∞(C) and thus concludes the proof.

We write L(X0,Z) in quadratic form as L(X0,Z) =D0 +
1
2D

2
1 , where

(3.38) D0 = µ(x, z)∂x + q(x, z)∂z, D1 =
σ√
2
∂x.

We identify each first-order operator with the vector of its coefficients. For any (x, z) ∈
R2, consider the Lie algebra Lie(D0,D1)(x, z), that is the linear subspace generated by
D0 and D1 and closed with respect to the Lie bracket operation. We show that L(X0,Z)

satisfies the Hörmander’s condition, (as given by, e.g., condition (H) in [69, Section 2.3.2]),
i.e. dimLie(D0,D1)(x, z) = 2 for any (x, z) ∈R2. This implies that L(X0,Z) is hypoelliptic
and thus concludes the proof.

We follow the argument of [33, Theorem 6, Step I.3]. As D1 = [ σ√
2
,0] is constant, it

follows by easy computations that considering n times the Lie bracket of D1 and D0 gives

(3.39) [[. . . [[D0,D1], . . . ],D1],D1] =

(
σ√
2

)n (
µ(n)
x (x, z)∂x + q(n)x (x, z)∂z

)
,

where f (n)
x (x, z) denotes the n-th partial derivative of f with respect to x. By using again that

σ is a positive constant, we see that Hörmander’s condition is verified if, for any (x, z), we
have either q(x, z) ̸= 0 or q(n)x (x, z)(x, z) ̸= 0 for some n≥ 1. Suppose not: let (x0, z0) ∈R2

so that q(x0, z0) = 0 and q
(n)
x (x, z)(x0, z0) = 0 for every n≥ 1. Then, as q(x, z) is analytic

on R2, this implies that the section R ∋ x 7→ q(x, z0) is identically equal to 0. Thus, the
process (X0,Z) solution to (3.32) starting from any point (x, z0) is so that Zt ≡ z0 P-a.s.
Employing the process (X0,Φ) solution to (3.36), this implies that z0 ≡ Zt =

σ
γ log(Φt)−

X0
t , i.e. log(Φt) =

γ
σ (X

0
t + z0) for any t≥ 0. We show that this is not possible, which leads

to a contradiction and concludes the proof. Indeed, by Itô’s formula, one should have

(1 +Φ−1
t )(λ2 − λ1Φt) + γ2

Φ2
t

1 +Φt
− γ2

2
=

γ

σ
m2 + γ2

Φt

1 +Φt
− δ

γ

σ
X0

t .

By multiplying both sides by 1+Φt and by imposing the desired equality γ
σX

0
t = log(Φt)−

γ
σz0, this implies that the equality

(1 +φ−1)(λ2 − λ1φ)−
γ2

2
=

γ

σ
(m2 − δz0)− δ log(φ).

should hold true for every φ> 0. As this is clearly not the case, the proof is concluded.
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REMARK 3.3. By using the terminology of [33], we proved that the system (X0,Φ) does
not admit any trap curve, in the sense of Definition 5 therein. This implies that the diffusive
behavior of the pair (X0,Φ) is strong enough to make the process spread across the whole
state space R × R+. In other words, the process can not be confined (or "trapped") in a
one-dimensional manifold. Hypoellipticity of the infinitesimal generator L(X0,Φ) is a direct
consequence of this genuinely diffusive behavior, as shown by Lemma 3.6.

Our next goal is to prove that U ∈C1(O). To this extent, denote by τ∗(x, y) and ϑ∗(x, y)
the first entry times in the sets S+ and S− respectively. We need to ensure that, for any
sequence ((xn, yn))n≥1 ⊆ C, (xn, yn)→ (x, y) ∈ ∂C = ∂S+ ∪ ∂S−, it holds, respectively,

(3.40) τ∗(xn, yn)→ 0, P-a.s., or ϑ∗(xn, yn)→ 0, P-a.s.

In order to prove the above convergence, we show in Lemma 3.7 that the process (X0,Π) is
strong Feller. Next, we show in Lemma 3.8 that the boundary points of S± are probabilisti-
cally regular for Sc

± relatively to (X0,Π) respectively. As the process is strong Feller, by [29,
Volume II, Chapter 13.1-2] probabilistically regularity of ∂S± is equivalent to having (3.40).

LEMMA 3.7. The process (X0,Π) is strong Feller.

PROOF. We apply again the results of [72] (see also [32, Proposition 4.4]). Let f :
O → R be bounded and measurable and define F̃ : (0,∞) × O → R by F̃ (t, x, y) :=
E[f(Xx,y

t ,Πx,y
t )]. By [72, Section 5] (see in particular Corollary 8), it holds ∂tF̃ = L(X0,Π)F̃

on (0,∞) × O in the weak sense of Schwartz distributions. We show that the opera-
tor −∂t + L(X0,Π) is hypoelliptic over (0,∞) × O. Then, by [72, Corollary 9] we de-
duce F̃ ∈ C∞((0,∞) × O), which implies, in particular, that for any t > 0 fixed we have
(x, y) 7→ E[f(Xx,y

t ,Πx,y
t )] is continuous, thus proving the strong Feller property.

To prove the hypoellipticity, we show that the operator −∂t + L(X0,Z) satisfies the
parabolic Hörmander’s condition. This implies that −∂t +L(X0,Z) is hypoelliptic and there-
fore so is −∂t +L(X0,Π). We express −∂t +L(X0,Z) in quadratic form as D̄0 + D̄2

1 , where

D̄0 =−∂t + µ(x, z)∂x + q(x, z)∂z, D̄1 =
σ√
2
∂x.

As in the proof of Lemma 3.6, we identify D̄0 and D̄1 with the vector of their coefficients, so
that D̄0 = (−1, µ, q) and D̄1 = (0, σ√

2
,0). Therefore, parabolic Hörmander’s condition holds

if dimLie(D̄0, D̄1)(t, x, z) = 3 for any (t, x, z) ∈ (0,∞)×O. We notice D̄0 = (−1,D0) and
D̄1 = (0,D1), with D0 and D1 given by (3.38). As D0 and D1 do not depend on time, the n
times commutator of D̄0 and D̄1 is again given by (3.39). Fix (x, z) ∈R2. As showed in the
proof of Lemma 3.6 above, for any (x, z) ∈R2 there exists n̄≥ 0 so that q(n̄)(x, z) ̸= 0. Thus,
for such n̄, we easily see that the three vectors D̄0, D̄1 and the n̄ times commutator of D̄1

and D̄0 are linearly independent, thus proving that Hörmander’s condition is satisfied.

By definition, (see, e.g., [52, Definition 4.2.9]), the boundary points ∂C = ∂S+ ∪ ∂S− are
probabilistically regular for S± relatively to (X0,Π) if the random times

σ̂−(x, y) := inf{t > 0 : (Xx,y
t ,Πx,y

t ) ∈ S−}, σ̂+(x, y) := inf{t > 0 : (Xx,y
t ,Πx,y

t ) ∈ S+}

are such that

(3.41) P(σ̂−(x, y) = 0) = 1 ∀(xo, yo) ∈ ∂S−, P(σ̂+(x, y) = 0) = 1 ∀(xo, yo) ∈ ∂S+.

This is proved in the following Lemma.
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LEMMA 3.8. Every point (xo, yo) ∈ ∂S± is probabilistically regular, i.e. (3.41) holds
true.

PROOF. Let (xo, yo) ∈ ∂S−. Recall the definition of the likelihood ratio process Φ in
(3.36) and of the upper boundary a− in (3.21). Define ã−(φ) := a−

(
φ

1+φ

)
and notice that,

as a− is a non-increasing function of y and φ 7→ φ
1+φ is strictly increasing, ã−(φ) is non-

increasing as well. Then, as Πt =
Φt

1+Φt
, we have that

(X0
t ,Πt) ∈ S− ⇐⇒ X0

t ≥ a−(Πt) ⇐⇒ X0
t ≥ a−

(
Φt

1 +Φt

)
= ã−(Φt),

so that σ̂− = inf{t > 0 : X0
t ≥ ã−(Φt)}. Consider the process X defined in (3.27) and recall

that P(Xt ≤ X0
t ∀t ≥ 0) = 1. Since ã− is non-increasing, the rectangle R− := {(x,φ) ∈

R× (0,∞) : x≥ xo,φ≥ φo} is contained in the set {(x,φ) ∈ R×R+ : x≥ ã−(φ)} in S−
for any (xo, yo) ∈ ∂S−. By setting φo =

yo

1+yo
, these two facts imply the following chain of

inequalities:

σR−
:= inf{t > 0 : Xt ≥ xo,Φt ≥ φo} ≥ inf{t > 0 : Xt ≥ ã−(Φt)}

≥ inf{t > 0 : X0
t ≥ ã−(Φt)}= σ̂−.

As σ̂− ≤ σR−
, it is enough to show P(σR−

= 0) = 1. To do so, we make the further change
of variable Vt = log(Φt) to get
(3.42)

dVt =

(
γ2
(

eVt

1 + eVt
− 1

2

)
+ (e−Vt + 1)(λ2 − λ1e

Vt)

)
dt+ γdBt V0 = vo = log(φo).

so that σR−
= inf{t > 0 : Xt ≥ xo, Vt ≥ vo}. Reasoning as in [31, Proposition A.4] (see also

[37, Appendix B.9]), by using the semi-explicit representations of X and V , we have
(3.43)
P
(
σR−

≤ t
)
= P (Xs ≥ xo, Vs ≥ vo, for some s ∈ (0, t])

= P
(
xo +

∫ s

0
(m2 − δXr)dr+ σBs ≥ xo,

vo+

∫ s

0

(
γ2
( eVr

1 + eVr
− 1

2

)
+ (e−Vr + 1)(λ2 − λ1e

Vr)

)
dr+ γBs ≥ vo, for some s ∈ (0, t]

)
= P

(
Bs

s
≥ 1

s

∫ s

0
Frdr,

Bs

s
≥ 1

s

∫ s

0
Grdr, for some s ∈ (0, t]

)
,

where we set

Fr :=
δ

σ
Xr −

m2

σ
, Gr := γ

( eVr

1 + eVr
− 1

2

)
+

1

γ
(e−Vr + 1)(λ2 − λ1e

Vr).

We claim that the set above has full probability for any t > 0. To see that, we recall that,
by the law of iterated logarithms (e.g. [52, Theorem 2.9.23]), it holds limt→0

Bt

t =∞ on an
event of full probability. On the other hand, being the processes X and V continuous, the
right-hand sides of the inequalities in (3.43) converge to some finite values α and β on a set
of full probability. We suppose without loss of generality that those two events are equal, and
we denote it by A. Fix t > 0 and ω ∈A. Then, for any ε > 0 and L> α+β+ ε, it is possible
to find a sequence (sn)n≥1 of times, possibly depending on ω itself, so that

Bsn

sn
>L>α+ ε >

1

sn

∫ sn

0
Frdr
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for any sn < t. This implies A⊆ {σR−
≤ t} for any t > 0, so that P(σR−

< t) = 1. By taking
the limit as t→ 0, we get the claim for any (xo, yo) ∈ ∂S−.

The regularity of points (xo, yo) ∈ ∂S+ is dealt with analogously, by taking into ac-
count the pair (X,Φ), with X defined by (3.28), instead of (X,Φ) and the rectangle
R+ := {(x,φ) ∈ (0,∞)× [0,∞) : x≤ xo,φ≤ φo} instead of R−. The conclusion follows
by applying the same arguments as above to the processes X and V , using the fact that
lims→0

Bs

s =−∞ P-a.s.

We are now ready to prove the continuous differentiability of U :

THEOREM 3.9. One has U ∈C1(O).

PROOF. The value function U belongs to C2 in the continuation region C by Lemma 3.6
and it belongs to C∞ on the interior of the stopping regions as U ≡ ±K± on S±, respec-
tively. Thus, it only remains to prove that the derivatives Ux and Uy are continuous up to the
boundary. As U is constant in the interior of S+ and of S−, this amounts to prove that the
limits of Ux and Uy as (x, y) approaches ∂C are equal to 0.

We start with Ux(x, y). Let (x, y) ∈ C, ε > 0 so that (x+ ε, y) ∈ C, which is always possi-
ble as C is open. Consider 0≤ 1

ε (U(x+ ε, y)− U(x, y)), as x 7→ U(x, y) is non-decreasing
by Lemma 3.3. We estimate from above Ux(x, y). Let (τ∗, ϑ∗) be the equilibrium stopping
strategies for the Dynkin game starting at (x, y) ∈ C and (τ∗ε , ϑ

∗
ε) be the equilibrium stopping

times for the game starting at (x+ ε, y). Recall the definition of M(x,y)(τ,ϑ) in (3.10) and
notice that, as the Dynkin game has a value, we have

U(x, y) =M(x,y)(τ
∗, ϑ∗) = inf

τ
sup
ϑ

M(x,y)(τ,ϑ) = sup
ϑ

M(x,y)(τ
∗, ϑ)≥M(x,y)(τ

∗, ϑ∗
ε),

U(x+ ε, y) =M(x+ε,y)(τ
∗
ε , ϑ

∗
ε) = sup

ϑ
inf
τ
M(x+ε,y)(τ,ϑ)

= inf
τ
M(x+ε,y)(τ,ϑ

∗
ε)≤M(x+ε,y)(τ

∗, ϑ∗
ε).

This implies

0≤ U(x+ ε, y)−U(x, y)

ε
≤ 1

ε
E
[∫ τ∗∧ϑ∗

ε

0
e−δt

(
c′(Xx+ε,y

t )− c′(Xx,y
t )
)
dt

]
= E

[∫ τ∗∧ϑ∗
ε

0
e−2δt

∫ 1

0
c′′
(
Xx,y

t + rεe−δt
)
drdt

]
,

where the last equality follows from the fundamental theorem of calculus and by exploit-
ing the linearity of the process Xx,y , which yields Xx+ε,y

t −Xx,y
t = εe−δt. Recalling that

|c′′(x)| ≤ α2(1 + |x|p−2) by Assumption 3.1, by using (3.12) we have the following bound:∣∣∣∣∣E
[∫ τ∗∧ϑ∗

ε

0
e−2δt

∫ 1

0
c′′
(
Xx,y

t + rεe−δt
)
drdt

] ∣∣∣∣∣≤ κ
(
1 +E

[∫ ∞

0
e−2δt|Xx,y

t |p−2dt
])

<∞,

for any ε ∈ (0,1]. Since c′′ is continuous over (0,∞) and ϑ∗
ε → ϑ∗, P-a.s., as ε ↓ 0, the

dominated convergence theorem yields
(3.44)

0≤ Ux(x, y) = lim
ε→0

U(x+ ε, y)−U(x, y)

ε
≤ E

[∫ τ∗∧ϑ∗

0
e−2δt

∣∣c′′ (Xx,y
t )

∣∣dt] , ∀(x, y) ∈ C.
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Now we send (x, y) to (xo, yo) ∈ ∂S+ (respectively, ∂S−). By (3.40), we have τ∗(x, y)→ 0
(respectively, ϑ∗(x, y)→ 0), so that (3.44) and dominated convergence theorem imply

0≤ lim
(x,y)→(xo,yo)∈∂S±

Ux(x, y)≤ lim
(x,y)→(xo,yo)∈∂S±

Ux(x, y)≤ 0,

thus proving that Ux is continuous across ∂S+ (respectively, across ∂S−).

We now deal with the continuity of the partial derivative Uy across the boundary of C.
Let (x, y) ∈ C, ε > 0 so that (x, y + ε) ∈ C, which is always possible as C is open. Consider
1
ε (U(x, y+ ε)−U(x, y))≥ 0, as x 7→ U(x, y) is non-decreasing by Lemma 3.3. We estimate
from above Uy(x, y). Let (τ∗, ϑ∗) be the equilibrium stopping strategies for the Dynkin game
starting at (x, y) ∈ C and (τ∗ε , ϑ

∗
ε) be the equilibrium stopping times for the game starting at

(x, y + ε). As the times ϑ∗
ε are sub optimal for the sup-player when starting at (x, y) and τ∗

is sub optimal for the inf-player when starting from (x, y+ ε), we have again

(3.45)

0≤ U(x, y+ ε)−U(x, y)

ε
≤ 1

ε
E
[∫ τ∗∧ϑ∗

ε

0
e−δt

(
c′(Xx,y+ε

t )− c′(Xx,y
t )
)
dt

]

= E

[∫ τ∗∧ϑ∗
ε

0
e−δtX

x,y+ε
t −Xx,y

t

ε

∫ 1

0
c′′
(
Xx,y

t + r(Xx,y+ε
t −Xx,y

t )
)
drdt

]
.

Set ∆Πy
t :=

1
ε (Π

x,y+ε
t −Πx,y

t ) and ∆Xy
t := 1

ε (X
x,y+ε
t −Xx,y

t ). By direct calculations, their
stochastic differentials are given by

d∆Xy
t = (σγ∆Πy

t − δ∆Xy
t )dt, ∆Xy

0 = 0,

d∆Πy
t =−(λ1 + λ2)∆Πy

t dt+ γ∆Πy
t

(
1−Πx,y+ε

t −Πx,y
t

)
dBt, ∆Πy

0 = 1.

Let Ry = (Ry
t )t≥0 be given by

dRy
t =−(λ1 + λ2)R

y
t dt+ γRy

t (1− 2Πx,y
t )dBt, Ry

0 = 1.

Notice that Ry does not depend on x as Πx,y does not. By [74, Theorem V.7.39], we have
∆Πy

t →Ry
t , P-a.s., for all t≥ 0, as ε→ 0, which implies ∆Xy

t → e−δtσγ
∫ t
0 e

δsRy
sds, P-a.s.,

as well. Then, provided that we can apply the dominated convergence theorem, it holds

(3.46) 0≤ Uy(x, y)≤ σγE
[∫ τ∗∧ϑ∗

0
e−2δt

(∫ t

0
Ry

sds
)
c′′
(
Xx,y

t

)
dt

]
.

By taking the limit as C ∋ (x, y)→ (xo, yo) ∈ ∂S± and invoking (3.40), we deduce

0≤ lim
(x,y)→(xo,yo)∈∂S±

Uy(x, y)≤ lim
(x,y)→(xo,yo)∈∂S±

Uy(x, y)≤ 0,

thus proving continuity across the boundary of C.
The rest of the proof is dedicated to showing that dominated convergence theorem

can be applied in (3.45) to obtain the lower bound on Uy (3.46). As one has ∆Xy
t =

e−δtγσ
∫ t
0 e

δs∆Πy
sds, we set

(3.47) Ξε := σγ

∫ τ∗∧ϑ∗
ε

0
e−2δt

(∫ t

0
∆Πy

sds
)∫ 1

0
c′′
(
Xx,y

t + r(Xx,y+ε
t −Xx,y

t )
)
drdt.

We aim at showing that the family (Ξε)ε∈(0, 1
2
] is bounded in L2-norm, hence uniformly inte-

grable. By using again |c′′(x)| ≤ α2(1 + |x|p−2) with p≥ 2 and the fact that ∆Πy
t is always

positive, we have
(3.48)

|Ξε| ≤ κ

∫ ∞

0
e−2δt

(∫ t

0
∆Πy

sds
)(

1 + |Xx,y
t |p−2 + εp−2e−δ(p−2)t

(∫ t

0
∆Πy

sds
)p−2

)
dt,
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for some positive constant κ. We suppose first p ̸= 2. By taking the expectation, applying
Jensen’s inequality, Fubini-Tonelli’s theorem and using (3.12), we deduce

E[|Ξε|2]≤ κ0 + κ1E
[∫ ∞

0
e−2δt

((∫ t

0
∆Πy

sds
)2

+
(∫ t

0
∆Πy

sds
)4)

dt

+

∫ ∞

0
e−pδt

(∫ t

0
∆Πy

sds
)2(p−1)

dt

]
≤ κ0 + κ1

(∫ ∞

0
e−2δt

(
t

∫ t

0
E[(∆Πy

s)
2]ds+ t3

∫ t

0
E[(∆Πy

s)
4]ds

)
dt

+

∫ ∞

0
e−pδtt2p−3

∫ t

0
E[(∆Πy

s)
2(p−1)]dsdt

)
≤ κ0 + κ1

(∫ ∞

0
e−2δt

(
t

∫ t

0
E[(∆Πy

s)
2]ds+ t3

∫ t

0
E[(∆Πy

s)
4]ds

)
dt

+

∫ ∞

0
e−pδttα

∫ t

0
E[(∆Πy

s)
2(p−1)]dsdt

)
,

where α= ⌈2(p− 1)− 1⌉. Integrating by parts, we finally get

(3.49) E[|Ξε|2]≤ κ0 + κ1

(∫ ∞

0
e−2δt

(
E[(∆Πy

t )
2] + g2(t)E[(∆Πy

t )
4]
)
dt

+

∫ ∞

0
e−pδtgα(t)E[(∆Πy

t )
2(p−1)]dt

)
,

where g2(t) and gα(t) are two suitable polynomials of degree 2 and α respectively. We notice
that, for any q ≥ 1, we have

(3.50) (∆Πy
t )

q = exp

(
−q(λ1 + λ2)t+

q(q− 1)

2
γ2
∫ t

0
(1−Πy

s −Πy−ε
s )2ds

)
M

(q)
t

with M (q) a positive martingale, and (1−Πy
t −Πy−ε

t )2 ≤ 2. Then, we bound (3.49) by

(3.51) κ

∫ ∞

0
e−2δt

(
e−2(λ1+λ2)t+2γ2t + g2(t)e

−4(λ1+λ2)t+12γ2t
)
dt

+

∫ ∞

0
e−pδtgα(t)e

−2(p−1)(λ1+λ2)t+2(p−1)(2p−3)γ2tdt,

which is finite if and only if condition (3.29) in Assumption 3.2 holds. This implies
supε∈(0,1]E[|Ξε|2]<∞ which concludes the proof in the case p > 2.

If p= 2, we notice that (3.48) reduces to

|Ξε| ≤ κ

∫ ∞

0
e−2δt

(∫ t

0
∆Πy

sds
)
dt.

Then, by the same steps as before, we get

(3.52) E[|Ξε|2]≤ κ

∫ ∞

0
e−2δtE

[(∫ t

0
∆Πy

t

)2]
dt≤ κ

∫ ∞

0
e−2δtt

(∫ t

0
E
[(
∆Πy

s

)2]
ds
)
dt

≤ κ

∫ ∞

0
e−2δtE

[(
∆Πy

t

)2]
dt≤ κ

∫ ∞

0
e−t(2δ+2(λ1+λ2)−2γ2)dt <∞,
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by condition (3.30) in Assumption 3.2. This shows that (Ξε)ε∈(0, 1
2
] is uniformly bounded in

L2.

REMARK 3.4. For later use, we notice that the calculations in the proof of Theorem 3.9
imply the following bounds on the first-order derivatives of U :

(3.53) |Ux(x, y)| ≤ κ1(1 + |x|p−2), |Uy(x, y)| ≤ κ2,

for some positive constants κ1 and κ2. In order to see this, we proceed as follows. As for
the x-derivative, recalling that Ux ≡ 0 on S− and S+ and using (3.44), Assumption 3.1 and
Lemma 3.1, we have

|Ux(x, y)| ≤
∫ ∞

0
e−2δtE

[∣∣c′′ (Xx,y
t )

∣∣]dt
≤ κ

(
1 +

∫ ∞

0
e−2δtE

[
|Xx,y

t |p−2
]
dt

)
≤ κ(1 + |x|p−2),

As for Uy , we have Uy ≡ 0 on S±. Then, we recall that the random variables (Ξε)ε∈(0, 1
2
]

defined in (3.47) are uniformly integrable, and that their L2-norm do not depend on the
initial value y ∈ (0,1), as showed by (3.51) if p > 2 or by (3.52) if p= 2. Then, by dominated
convergence theorem and (3.46), one has

|Uy(x, y)| ≤ σγE
[∫ τ∗∧ϑ∗

0
e−2δt

(∫ t

0
Ry

sds
)
c′′
(
Xx,y

t

)
dt

]
≤ sup

ε∈(0, 1
2
]

E[|Ξε|2]
1

2 ≤ κ2

with κ2 given by the square root of right-hand side of (3.51) if p > 2 or of (3.52) if p= 2.

3.1.3. Regularity refinements: a new coordinate system for the value function U . In Sec-
tion 3.1.2, we proved that Hypothesis 2.2 is satisfied and, moreover, that U ∈ C1(O). Due
to the degeneracy of the operator L(X0,Π), we cannot infer more about the regularity of U .
In particular, it is not possible to prove that U ∈W2,∞

loc . Thus, the existence of a pair (V,λ)
solution of (2.7) and of an optimal control ξ⋆ will be proved by means of Theorem 2.3, which
requires less regularity.

Theorem 2.3 requires that L(X0,Π)U exists almost everywhere and belongs to L∞
loc(O). In

order to recover such regularity, we consider the transformation of the value function Û(x, z)
associated with the change of coordinates (X0,Z) (3.31) and investigate its regularity prop-
erties.

Recall from Lemma 3.5 and equation (3.35) the definition of the process (X0,Z) and of
the diffeomorphism Ψ. Set

(3.54) Û(x, z) := U (Ψ((x, z))) = U

(
x,

e
γ

σ
(z+x)

1 + e
γ

σ
(z+x)

)
so that

(3.55) U(x, y) = Û
(
Ψ−1((x, y))

)
= Û

(
x,

σ

γ
log

(
y

1− y

)
− x

)
.

Notice that Û(x, z) has the same representation as in (3.9):

(3.56) Û(x, z) := inf
τ
sup
ϑ

E
[∫ τ∧ϑ

0
e−δtc′(Xx,z

t )dt+K+e
−δτ1τ<ϑ −K−e

−δϑ1ϑ<τ

]
,
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with the pair (X0,Π) given by (3.6) replaced by (X0,Z) given by (3.32). Analogous proper-
ties as in Lemma 3.3 hold for Û as well. Consider the sets Ĉ := Ψ−1(C) and Ŝ± := Ψ−1(S±).
Notice that, since Ψ is a diffeomorphism, Ĉ and Ŝ± are respectively open and closed sets. In
order to identify the boundaries of these sets, define the functions b± as follows: Let â±(x)
be the generalized inverse of a±(y), defined by

â+(x) := sup{y ∈ (0,1) : a+(y)≤ x}, â−(x) := inf{y ∈ (0,1) : a−(y)≥ x}.

Set

(3.57) b±(x) :=
σ

γ
log
( â±(x)

1− â±(x)

)
− x,

which are well defined, as â±(R) ⊆ (0,1). Since â± are non-increasing, as a± are so, we
deduce that b± are strictly decreasing, so that we can consider the inverses of b±:

(3.58) b̂±(z) := (b±)
−1(z).

By using the barriers b̂±, the continuation and stopping regions related to Û can be expressed
as follows:

(3.59)

Ĉ = {(x, z) : −K+ < Û(x, z)<K−}= {(x, z) : b̂+(z)< x< b̂−(z)},

Ŝ− = {(x, z) : Û(x, z)≥K−}= {(x, z) : x≥ b̂−(z)},

Ŝ+ = {(x, z) : Û(x, z)≤−K+}= {(x, z) : x≤ b̂+(z)}.

Observe that the stopping times (τ∗, ϑ∗) defined by (3.14) are a saddle point for the Dynkin
game with value function Û(x, z) as well, and they can be expressed as the first entry times
of the process (X0,Z) in the sets Ŝ+ and Ŝ− respectively.

LEMMA 3.10. Let Û be the value function of the Dynkin game defined by (3.56). Then,
Û ∈C1(R2)∩C2(Ĉ) and it solves

(3.60)


L(X0,Z)Û(x, z) + c′(x)− δÛ(x, z) = 0, if b̂+(z)< x< b̂−(z),

Û(x, z) =−K+, if x≤ b̂+(z),

Û(x, z) =K−, if x≥ b̂−(z).

Moreover, Ûxx ∈ L∞
loc(R2).

PROOF. The fact that Û ∈C1(R2)∩C2(Ĉ) and it solves (3.60) follows easily by definition
of Û , Ĉ, Lemma 3.6 and Theorem 3.9. It remains to show that Ûxx ∈ L∞

loc(R2). To accomplish
that, first of all notice that Ûxx admits a continuous extension to the closure of Ĉ, which we
still denote by Ûxx. As a matter of fact, for any (x, z) ∈ Ĉ, it holds

Ûxx(x, z) =
2

σ2

(
−q(x, z)Ûz(x, z)− µ(x, z)Ûx(x, z) + δÛ(x, z)− c′(x)

)
,

and the right-hand side of the latter is continuous over R2 since Û ∈ C1(R2). Then, take
(xo, zo) ∈ ∂Ĉ. For any x≥ b̂−(zo), we have

|Ûx(x, zo)− Ûx(xo, zo)|

≤
∫ b̂−(zo)

xo

|Ûxx(x
′, zo)|dx′ +

∫ x

b̂−(zo)
|Ûxx(x

′, zo)|dx′ ≤ κ(xo, zo)|x− x0|.
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The claimed local boundedness of Ûxx is then proved, being this trivially satisfied in the
interior of Ĉ, Ŝ+ and Ŝ−.

Lemma 3.10 allows us to improve the regularity of U , in the sense described by the fol-
lowing lemma.

LEMMA 3.11. L(X0,Π)U exists for a.e. (x, y) ∈O and it belongs to L∞
loc(O). Moreover,

it holds

(3.61) L(X0,Π)U(x, y) = L(X0,Z)Û
(
x, z(x, y)

)
, for a.e. (x, y) ∈O.

PROOF. As U is constant on O \ C and invoking Theorem 3.9, we deduce that U ∈
C2(O \ ∂C). Analogously, Û ∈ C2(R2 \ ∂Ĉ). Moreover, as L(X0,Π) and L(X0,Z) are Ψ-
diffeomorphic, it holds L(X0,Π)U(x, y) = L(X0,Z)Û

(
x, z(x, y)

)
for any (x, y) ∈O \ ∂C. By

Lemma 3.10, L(X0,Π)Û is defined for a.e. (x, z) ∈ R2 and it belongs to L∞
loc(R2). This con-

cludes the proof.

3.1.4. Solution of the ergodic singular control problem. In this section, we conclude the
study of the ergodic singular control problem, by showing that the assumptions of Theorem
2.3 are satisfied. In particular, in Lemma 3.12 we build the candidate pair (V,λ) as prescribed
by (2.33) and (2.34), we show that V ∈ W2,∞

loc (O) ∩ C2(C) and that λ is continuous and
bounded. Then, in Lemma 3.13 we build a candidate optimal control ξ⋆ as in (2.36). Finally,
in Theorem 3.15, we verify the remaining assumptions, thus completely solving the ergodic
singular stochastic control problem (3.3).

Recall that Hypothesis 2.2 is satisfied, so that, in particular, it holds supy∈(0,1) a+(y) <
infy∈(0,1) a−(y).

LEMMA 3.12. Let α ∈ (supa+(y), inf a−(y)). Consider the function V given by (2.33).
It holds V ∈C1(O), and Vxy , Vxx belong to C(O) and Vyy ∈ L∞

loc(O)∩C(C). In particular,
its partial derivatives are given by
(3.62)
Vx(x, y) = Û

(
x, z(x, y)

)
Vxx(x, y) = Ûx

(
x, z(x, y)

)
− Ûz

(
x, z(x, y)

)
,

Vxy(x, y) = Ûz

(
x, z(x, y)

)σ
γ

1

y(1− y)
,

Vy(x, y) =
σ

γ

1

y(1− y)

∫ x

α
Ûz(x

′, z(x′, y))dx′,

Vyy(x, y) =
σ

γ

2y− 1

y2(1− y)2

∫ x

α
Ûz(x

′, z(x′, y))dx′

+
σ2

γ2
1

y2(1− y)2

(
Ûz

(
α, z(α,y)

)
− Ûz

(
x, z(x, y)

))
+

σ2

γ2
1

y2(1− y)2

(
Ûx

(
α, z(α,y)

)
− Ûx

(
x, z(x, y)

)
+

∫ x

α
Ûxx

(
x′, z(x′, y)

)
dx′
)
.
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PROOF. By exploiting the relationship (3.55) between U and Û and relying on the change
of variable q = z(x′, y) = σ

γ log
( y
1−y

)
− x′, we deduce the following representation for V :

(3.63) V (x, y) =

∫ x

α
Û
(
x′, z(x′, y)

)
dx′ =

∫ σ

γ
log( y

1−y
)−α

σ

γ
log( y

1−y
)−x

Û
(σ
γ
log(

y

1− y
)− q, q

)
dq.

We notice that the limits of integration in the second equality of (3.63) are given by z(x, y)
and z(x,α) respectively. By noticing that x′ (z(x, y), y) = x, using the chain rule and the
equalities

zx(x, y) =−1, zy(x, y) =
σ

γ

1

y(1− y)
, zyy(x, y) =

σ

γ

2y− 1

y2(1− y)2
,

it follows from direct computations that the x-partial derivatives take the form described by
(3.62). As for the derivatives with respect to y, we have
(3.64)
Vy(x, y)

=
σ

γ

1

y(1− y)

(
Û
(
α, z(α,y)

)
− Û

(
x, z(x, y)

)
+

∫ z(α,y)

z(x,y)
Ûx

(σ
γ
log(

y

1− y
)− q, q

)
dq

)
,

Vxy(x, y) =
σ

γ

1

y(1− y)
Ûz

(
x, z(x, y)

)
,

Vyy(x, y)

=
σ

γ

2y− 1

y2(1− y)2

(
Û
(
α, z(α,y)

)
− Û

(
x, z(x, y)

)
+

∫ z(α,y)

z(x,y)
Ûx

(σ
γ
log(

y

1− y
)− q, q

)
dq

)

+
σ2

γ2
1

y2(1− y)2

(
Ûz

(
α, z(α,y)

)
− Ûz

(
x, z(x, y)

))
+

σ2

γ2
1

y2(1− y)2

(
Ûx

(
α, z(α,y)

)
− Ûx

(
x, z(x, y)

)
+

∫ z(α,y)

z(x,y)
Ûxx

(σ
γ
log(

y

1− y
)− q, q

)
dq

)
.

To conclude, we notice that the following equality holds:∫ z(α,y)

z(x,y)
Ûx

(σ
γ
log(

y

1− y
)− q, q

)
dq =

∫ x

α
Ûx(x

′, z(x′, y))dx′

=

∫ x

α

(
Ux(x

′, y)dx′ − Ûz(x
′, z(x′, y))zx(x

′, y)
)
dx′

= Û
(
x, z(x, y)

)
− Û

(
α, z(α,y)

)
+

∫ x

α
Ûz(x

′, z(x′, y))dx′.

Using this identity in (3.64) yields to (3.62). The regularity properties of V and its derivatives
follow directly from the ones of Û (cf. Lemma 3.10).
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We now build an optimal control ξ⋆ = (ξ⋆,+, ξ⋆,−) ∈ B. Consider the process ξ⋆ =
(ξ⋆,+, ξ⋆,−) so that the pair (Xξ⋆ , ξ⋆) solves the Skorohod reflection problem:
(3.65)

a+(Πt)≤Xξ⋆

t ≤ a−(Πt), Px,y-a.s., for almost all t≥ 0,

ξ⋆,+t =

∫ t

0
1{Xξ⋆

s−≤a+(Πs)}dξ
⋆,+
s , ξ⋆,−t =

∫ t

0
1{Xξ⋆

s−≥a−(Πs)}dξ
⋆,−
s , Px,y-a.s., ∀t≥ 0,

∫ ∆ξ⋆,+t

0
1{(Xξ⋆,+

t +z,Πt)∈C}
dz +

∫ ∆ξ⋆,−t

0
1{(Xξ⋆

t −z,Πt)∈C}dz = 0, Px,y-a.s., ∀t≥ 0.

where ∆ξ⋆,±t = ξ⋆,±t − ξ⋆,±t− .

By using the similar techniques as in [35, Section 4.3] and [34, Section 6.1], it is possible
to explicitly build the solution to the Skorohod reflection problem (3.65), as shown by the
following Lemma:

LEMMA 3.13. There exists a solution to (3.65). Moreover, ξ⋆ is admissible.

PROOF. For any ξ ∈ B, define (Λ, ξ̄) by setting

(3.66) dξ̄±t = eδtdξ±t , Λt = x+ ξ̄+t − ξ̄−t .

By using ξ̄, we represent Xξ as

Xξ
t = e−δtx+X 0

t + e−δt

(∫ t

0
eδsdξ+t −

∫ t

0
eδsdξ+t

)
= e−δtx+X 0

t + e−δtξ̄+t − e−δtξ̄−t ,

where X 0 denotes the uncontrolled process starting from x = 0. We then express the con-
straint a+(Πt)≤Xξ⋆

t ≤ a−(Πt) as

(3.67) ν+t := eδt
(
a+(Πt)−X 0

t

)
≤ x+ ξ̄⋆,+t − ξ̄⋆,−t ≤ eδt

(
a−(Πt)−X 0

t

)
=: ν−t ,

where ν± = (ν±t )t≥0 are respectively left-continuous and right-continuous adapted pro-
cesses. Thus, the reflection problem (3.65) can be then restated equivalently in terms of
(Λ, ξ̄⋆) as
(3.68)

ν+t ≤Λt ≤ ν−t , Px,y-a.s., for almost all t≥ 0,

ξ̄⋆,+t =

∫ t

0
1{Λs−≤ν+

s }dξ̄
⋆,−
s , ξ̄⋆,−t =

∫ t

0
1{Λs−≥ν−

s }dξ̄
⋆,−
s , Px,y-a.s., ∀t≥ 0,

∫ ∆ξ̄⋆,+t

0
1{ν+

t <Λt+z<ν−
t }dz +

∫ ∆ξ̄⋆,−t

0
1{ν+

t <Λt−z<ν−
t ∈C}dz = 0, Px,y-a.s., ∀t≥ 0.

We build the process ξ̄⋆ = (ξ̄⋆,+, ξ̄⋆,−) so that (3.68) is satisfied. Then, it will be enough to
set

ξ⋆,±t =

∫ t

0
e−δsdξ̄⋆,±s ,

as the pair (Xξ⋆ , ξ⋆) satisfies (3.65) by construction.

To this extent, consider the stopping times

(3.69)

τ+0 := inf{t≥ 0 : x < ν+t }= inf{t≥ 0 : e−δtx+X 0
t < a+(Πt)},

τ−0 := inf{t≥ 0 : x > ν−t }= inf{t≥ 0 : e−δtx+X 0
t > a−(Πt)},

τ0 := τ+0 ∧ τ−0 .
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Notice that, because infy∈(0,1)
(
a−(y)− a+(y)

)
> 0 by Lemma 3.4, we have {τ+0 = τ−0 }=

{τ0 =∞}. Let Ω+ = {τ+0 < τ−0 }, Ω− = {τ−0 < τ+0 } and Ω∞ = {τ0 =∞}. We recursively
define ξ̄⋆. Set Λ0

t = x for every t≥ 0, and for every k ≥ 1, define:

If k ≥ 1 is odd, Λk
t :=


x, on Ω∞,

x+maxs∈[τk−1,t]

(
ν+s − x

)+
, on Ω+,

x+mins∈[τk−1,t]

(
ν−s − x

)−
, on Ω−,

with τk :=


∞, on Ω∞,

inf{t≥ τk−1 : Λ
k
t > ν−t }, on Ω+,

inf{t≥ τk−1 : Λ
k
t < ν+t }, on Ω−.

If k ≥ 2 is even, Λk
t :=


x, on Ω∞,

x+maxs∈[τk−1,t]

(
ν+s − x

)+
, on Ω−,

x+mins∈[τk−1,t]

(
ν−s − x

)−
, on Ω+,

with τk :=


∞, on Ω∞,

inf{t≥ τk−1 : Λ
k
t > ν−t }, on Ω−,

inf{t≥ τk−1 : Λ
k
t < ν−t }, on Ω+.

In light of these definitions, and setting τ−1 := 0, one can then proceed as in [35, Section 4.3]
in order to conclude that the pair

(3.70) Λξ̄⋆

t =

∞∑
k=0

1[τk−1,τk)(t)Λ
k
t , ξ̄⋆t =Λξ̄⋆

t − x

is a solution to the reflection problem (3.68). The minimality properties in the second and
third equation of (3.68) follow directly from [35, Section 4.3] (see in particular Lemma 4.11
therein). Finally, we notice that, thanks to the boundedness of U , we have |V (x, y)| ≤ κ(1 +
|x|). Moreover, as the control ξ⋆ keeps the process in [a+(Πt), a−(Πt)] and a+ ≤ a+(y) <

a−(y)≤ a− for any y ∈ (0,1) by Lemma 3.4, we have that Xξ⋆

T is uniformly bounded, Px,y-
a.s. This concludes the proof.

Before showing that ξ⋆ is optimal for the original singular control problem, we show that
Π admits a stationary distribution. By Remark 2.1, this entails that the problem admits a
unique value λ⋆ regardless of the initial data.

LEMMA 3.14. The process Π admits a stationary distribution.

PROOF. By [49, Lemma 23.19] it is enough to verify that the density of the speed measure
m′(x) of the process Π is integrable over the state space [0,1]. By definition, we have

m′(x) =
2

γ2x2(1− x)2
e
2
∫ x

a

λ2−(λ1+λ2)y

γ2y2(1−y)2
dy
.

where a ∈ (0,1). Without loss of generality, we choose a= 1
2 . We first verify integrability in

a neighborhood of 0. For ε > 0, we have∫ ε

0
m′(x)dx=

∫ ε

0

2

γ2x2(1− x)2
e
− 2λ2

γ2

∫ 1
2

x
1

y2(1−y)2
dy
e

2(λ1+λ2)

γ2

∫ 1
2

x
1

y(1−y)2 dx

≤
∫ ε

0

2

γ2x2(1− x)2
e
− 2λ2

γ2

∫ 1
2

x
1

y2(1−y)2
dy
e

2(λ1+λ2)

4γ2

∫ 1
2

x
1

y dx
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≤
∫ ε

0

2

γ2x2(1− x)2
e
− 2λ2

γ2

∫ 1
2

x
1

y2(1−y)2
dy
e

λ1+λ2
2γ2 (ln( 1

2
)−ln(x))dx

≤ κ

∫ ε

0

2

γ2x2(1− x)2
e
− 2λ2

γ2

∫ 1
2

x
1

y2(1−y)2
dy
eln
(
x
−λ1+λ2

2γ2
)
dx

= κ

∫ ε

0

2

γ2x2(1− x)2
e
− 2λ2

γ2

∫ 1
2

x
1

y2(1−y)2
dy
x−

λ1+λ2
2γ2 dx

for some positive constant κ, where we used the inequality (1− y)2 ≥ 4 for y ∈ (0, 12) in the
first estimate. By exploiting the inequality (1− y)2 ≤ 1, we bound the last term above with

κ

∫ ε

0

2

γ2x2(1− x)2
e−

2λ2
γ2

∫ 1
2

x
1

y2 dyx−
λ1+λ2
2γ2 dx≤ κ

∫ ε

0

2

γ2x2(1− x)2
x−

λ1+λ2
2γ2 e−

2λ2
γ2

1

xdx,

which is finite. As for integrability in a neighborhood of 1, we notice that the process Π
is symmetric, in the sense that Π and 1− Π solve the same equation (3.6) with λ1 and λ2

inverted. Then, the same computations show that the density of the speed measure of 1−Π
is integrable in 0, and so is the density of the speed measure of Π in 1.

Let α ∈ (supa+(y), inf a−(y)), and recall the definition of (V,λ) from (2.33) and (2.34).
We are finally ready to show that the control ξ⋆ solves the original singular stochastic control
problem.

THEOREM 3.15 (Optimal control). The policy ξ⋆ solution to the Skorohod reflection
problem (3.65) is optimal for the ergodic stochastic singular control problem. Moreover,
the problem has a value, given by

λ⋆ = lim
T↑∞

1

T
Ey

[∫ T

0
λ(Πt)dt

]
= inf

ξ∈B
lim

T→+∞

1

T
Ex,y

[∫ T

0
c(Xξ

t )dt+K+ξ
+
T +K−ξ

−
T

]
.

PROOF. We verify that the assumptions of Theorem 2.3 are satisfied. By Lemma 3.12, V ∈
W2,∞

loc (O) ∩C2(C). We now verify that equality (2.35) is satisfied. By explicit computation
using the derivative of V given by (3.62), it holds

1

2
σ2Vxx(x, y) + σγy(1− y)Vxy(x, y) +

1

2
γ2y2(1− y)2Vyy(x, y)

=
1

2
σ2
(
Ûz

(
α, z(α,y)

)
+ Ûx

(
α, z(α,y)

))
+

∫ x

α

(1
2
σ2Ûxx

(
x′, z(x′, y)

)
+

1

2
σγ(2y− 1)Ûz

(
x′, z(x′, y)

))
dx′.

As for the first order derivatives, by using the fundamental theorem of calculus, the identity
b(x, y) = µ(x, z(x, y)) and (3.62), we deduce

b(x, y)Vx(x, y) = b(x, y)U(x, y) =

∫ x

α

d

dx′

[
b(x′, y)U(x′, y)

]
dx′ + b(α,y)U(α,y)

=

∫ x

α

(
− δÛ(x′, z(x′, y)) + µ(x′, z(x, y))Ûx(x

′, z(x′, y))

+ µ(x′, z(x′, y))zx(x
′, y)Ûz(x

′, z(x′, y))
)
dx′

+ µ
(
α, z(α,y)

)
Û
(
α, z(α,y)

)
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and(
λ2 − (λ1 + λ2)y

)
Vy(x, y) =

(
λ2 − (λ1 + λ2)y

)∫ x

α
Uy(x

′, y)dx′

=

∫ x

α

(
λ2 − (λ1 + λ2)y

)
zy(x

′, y)Ûz(x
′, z(x′, y))dx′.

Therefore, we have
(3.71)
L(X0,Π)V (x, y) + c(x)

= µ
(
α, z(α,y)

)
Û
(
α, z(α,y)

)
+ c(α) +

1

2
σ2
(
Ûz

(
α, z(α,y)

)
+ Ûx

(
α, z(α,y)

))
+

∫ x

α

(
− δÛ(x′, z(x′, y)) + c′(x′) + µ(x′, z(x, y))Ûx(x

′, z(x′, y)) +
1

2
σ2Ûxx

(
x′, z(x′, y)

)
+
((

λ2 − (λ1 + λ2)y
)
zy(x

′, y) + µ(x′, z(x′, y))zx(x
′, y) +

1

2
σγ(2y− 1)

)
Ûz(x

′, z(x′, y))

)
dx′.

Notice that it holds

q
(
x, z(x, y)

)
=
(
λ2 − (λ1 + λ2)y

)
zy(x, y) + µ(x, z(x, y))zx(x, y) +

1

2
σγ(2y− 1),

so that (3.71) can be rewritten as

(3.72)

L(X0,Π)V (x, y) + c(x) = µ
(
α, z(α,y)

)
Û
(
α, z(α,y)

)
+ c(α)

+
1

2
σ2
(
Ûz

(
α, z(α,y)

)
+ Ûx

(
α, z(α,y)

))
+

∫ x

α

(
− δÛ(x′, z(x′, y)) + c′(x′) +L(X0,Z)Û(x′, z(x, y))

)
dx′.

By identity (3.55) in Lemma 3.11, noticing that Ûx(x, z(x, y)) = Ux(x, y) +
γ
σy(1 −

y)Uy(x, y) and Ûz(x, z(x, y)) =
γ
σy(1− y)Uy(x, y), we finally get that (3.72) is equivalent

to

L(X0,Π)V (x, y) + c(x)− λ(y) =

∫ x

α

(
L(X0,Π)U(x′, y)− δU(x′, y) + c′(x′)

)
dx′.

As L(X0,Π)U ∈ L∞
loc(O) and (x′, y) ∈ C for any (x′, y) ∈ {(x, y) ∈ O : a+(y)< x < α}, we

invoke (2.25) to conclude

L(X0,Π)V (x, y) + c(x)− λ(y) =

∫ x

a+(y)

(
L(X0,Π)U(x′, y)− δU(x′, y) + c′(x′)

)
dx′.

i.e. (2.35).
As for λ(y), we notice that it is continuous, as b(x, y), γy(1− y) are so and U ∈ C1(O).

Thus, λ ∈ L∞
loc

(
(0,1)

)
. By employing the bounds (3.53) on Ux and Uy , we deduce that λ(y)

is bounded. Therefore, the process (λ(Πt))t≥0 is bounded as well, hence dPy ⊗ dt integrable
for any T > 0.

Arguing as in [34, Lemma A.1], one has P((Xξ⋆

t ,Πt) ∈ C) = 1, for all t ≥ 0. As ξ⋆ is
admissible by Lemma 3.13, all the assumptions of Theorem 2.3. We conclude that ξ⋆ is an
optimal control and that (2.37) holds. Since Π admits a stationary distribution by Lemma
3.14, Remark 2.1 implies that λ⋆(y) = limT↑∞

1
T Ey[

∫ T
0 λ(Πt)dt] is constant in y, equal to

the value of the ergodic stochastic singular control problem λ⋆.
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3.2. Inventory control with observable mean-reversion level. Consider a complete fil-
tered probability space (Ω,F ,F= (Ft)t≥0,P), equipped with two correlated Brownian mo-
tions W 1 and W 2, with correlation factor ρ such that |ρ| < 1. The joint dynamics of the
inventory process X and the mean-reversion level Y are given by

(3.73)

{
dXξ

t =
(
Yt − δXξ

t

)
dt+ σ1dW

1
t + dξ+t − dξ−t , Xξ

0 = x,

dYt =
(
m− bYt

)
dt+ σ2dW

2
t , Y0 = y,

with ξ = (ξ+, ξ−) in B, m ∈R and b, σ1 and σ2 positive constants. Notice that, as all param-
eters are positive, the pair (X0, Y ) is ergodic. The firm aims at finding an optimal control
which realizes

(3.74) inf
ξ∈B

lim
T→∞

1

T
Ex,y

[∫ T

0
c(Xξ

t )dt+K+ξ
+
T +K−ξ

−
T

]
,

where the instantaneous cost c :R→R depends only on the inventory level. To simplify and
shorten the analysis, we assume that the cost function c is quadratic and it is given by

c(x) =
1

2
x2,

although a more general function, in the spirit of Section 3.1, could be considered. In the
following sections, we show that we can apply Theorem 2.2 and we build an optimal control
ξ⋆.

We make the following assumption on the parameters:

ASSUMPTION 3.3. We have b > δ.

This assumption is needed to ensure the Lipschitz-property of the free-boundaries a± of
the associated Dynkin game, which in turn will ensure the integrability of (λ(Yt))t≥0.

3.2.1. The associated Dynkin game. Here, we state the structure of the Dynkin game
associated to the control problem (3.74). As the volatility coefficients in (3.73) do not depend
on the state process Xξ , the Markov process underlying the auxiliary Dynkin game is just
given by (X0, Y ) solution of (3.73) with constant control ξ ≡ 0. When needed, in order to
simplify the notation, we write (Xx,y, Y x,y) to stress the dependence on the initial value
(x, y) ∈R2.

The Dynkin game associated to the control problem is given by

(3.75) U(x, y) := inf
τ
sup
ϑ

E
[∫ τ∧ϑ

0
e−δtc′(Xx,y

t )dt+K−e
−δτ1τ<ϑ −K+e

−δϑ1ϑ<τ

]
,

where c′(x) = x. We stress that the infinitesimal generator L(X0,Y ) is uniformly elliptic, as
the volatility matrix of (X0, Y ) is constant, ρ ̸=±1, the drifts are linear and the two obstacles
are constant functions. Then, by Theorems 3.2, 3.4 and 4.1 in [39] (upon also using Exercises
2 and 5), we have there exists a unique solution Ũ ∈W2,∞

loc (R2) of the pointwise variational
inequality (2.25). Define the sets S+ and S− by

S+ := {(x, y) ∈R2 : Ũ(x, y)≤−K+}, S− := {(x, y) ∈R2 : Ũ(x, y)≥K−},

and C :=R2 \(S+∪S−). By Sobolev embedding, Ũ ∈C1(R2). Moreover, due to the uniform
ellipticity of the generator L(X0,Y ), classical Schauder’s estimates imply that Ũ ∈C∞(C), as
the running cost function c′(x) = x belongs to C∞(R2) (see [40, Theorem 6.13]). Further-
more, it is clear that Ũ ∈C∞(S+ ∪ S−), being Ũ constant therein.
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We verify that the solution Ũ coincides with the value function of the Dynkin game U . To
this extent, take τ∗ = inf{t≥ 0 : (Xx,y

t , Y y
t ) ∈ S−} and ϑ∗ = inf{t≥ 0 : (Xx,y

t , Y y
t ) ∈ S−}.

Take any (x, y) ∈R2. By applying a weak version of Dynkin’s formula to e−δtŨ(Xx,y
t , Y y

t )
(see, e.g., [9], Lemma 8.1 and Theorem 8.5, pp. 183-186), for any stopping time ϑ we have

E[e−δ(t∧τ∗∧ϑ)Ũ(Xx,y
t∧τ∗∧ϑ, Y

y
t∧τ∗∧ϑ)]

= Ũ(x, y) +E
[∫ t∧τ∗∧ϑ

0
e−δs(L(X0,Y )Ũ(Xx,y

s , Y y
s )− δŨ(Xx,y

s , Y y
s ))ds

]
.

By using the fact that L(X0,Y )Ũ(x, y)− δŨ(x, y)≤−c′(x) for any (x, y) ∈R2 \ S−, we get

Ũ(x, y)≥ E
[∫ t∧τ∗∧ϑ

0
e−δsc′(Xx,y

s )ds+ e−δ(t∧τ∗∧ϑ)Ũ(Xx,y
t∧τ∗∧ϑ, Y

x,y
t∧τ∗∧ϑ)

]
By sending t→∞, we deduce

Ũ(x, y)≥ E
[∫ τ∗∧ϑ

0
e−δsc′(Xx,y

s )ds+ e−δ(τ∗∧ϑ)Ũ(Xx,y
τ∗∧ϑ, Y

x,y
τ∗∧ϑ)

]
≥ E

[∫ τ∗∧ϑ

0
e−δsc′(Xx,y

s )ds−K+e
−δϑ1ϑ<τ∗ +K−e

−δτ∗
1τ∗<ϑ

]
where we used Ũ(x, y) ≥ −K+ on R2 and Ũ(x, y) =K− on S−. Relying on the fact that
L(X0,Y )Ũ(x, y)− δŨ(x, y)≥−c′(x) for any (x, y) ∈R2 \ S+, the same computations show

(3.76) Ũ(x, y)≤ E
[∫ τ∧ϑ∗

0
e−δsc′(Xx,y

s )ds−K+e
−δϑ∗

1ϑ∗<τ +K−e
−δτ1τ<ϑ∗

]
for any (τ,ϑ) stopping times. Finally, the exploiting −δŨ(x, y)+L(X0,Y )Ũ(x, y)+c′(x) = 0
for (x, y) ∈ C, we get that (3.76) holds with equality for (τ∗, ϑ∗). This proves that (τ∗, ϑ∗)
identifies a saddle point for the Dynkin game (3.75), and thus Ũ(x, y) coincides with the
value function U(x, y).

It remains to express the sets S+ and S− in terms of the free-boundaries a± : R → R
and to investigate their properties. To this extent, we first notice that, for any fixed y ∈ R,
x 7→ U(x, y) is non-decreasing. To see this, fix y ∈ R, let x1 ≤ x2. Recalling that b > δ, by
linearity we have,

(3.77) Y y
t = e−bty+ Y 0

t , Xx,y
t = e−δtx+

1

δ− b
(e−bt − e−δt)y+X0,0

t ,

for any t ≥ 0 Px,y-a.s., where (X0,0, Y 0,0) denotes the solution of (3.73) starting from
(x, y) = (0,0). This clearly implies that Xx1,y

t ≤Xx2,y
t , P-a.s., for all t≥ 0. As c′ is strictly

increasing, we also have c′(Xx1,y
t ) ≤ c′(Xx2,y

t ) so that we deduce U(x1, y) ≤ U(x2, y).
By the same reasoning as above, recalling that b > δ by Assumption 3.3 , one has that
Xx,y1

t ≤Xx,y2

t whenever y1 ≤ y2, which in turn implies U(x, y1)≤ U(x, y2).

We then set

(3.78) a−(y) := inf{x ∈R : U(x, y)≥K−}, a+(y) := sup{x ∈R : U(x, y)≤−K+},

with the conventions sup∅ = −∞, inf ∅ = +∞. Then, continuity and monotonicity of U ,
upon exploiting the bounds −K+ ≤ U(x, y)≤K−, yields

(3.79)
S+ = {(x, y) ∈R2 : x≤ a+(y)}, S− = {(x, y) ∈R2 : x≥ a−(y)},

C = {(x, y) ∈R2 : a+(y)< x< a−(y)}.
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LEMMA 3.16.

(i) The maps a±(y) are non-increasing. Moreover, a− is right-continuous and a+ is left-
continuous.

(ii) For any y ∈R, it holds a+(y)≤ (c′)−1(−K+δ)< (c′)−1(K−δ)≤ a−(y).
(iii) For any y ∈R, a+(y)>−∞ and a−(y)<+∞.
(iv) a+ and a− are Lipschitz continuous.

PROOF. Points (i) and (ii) can be proven exactly as in Lemma 3.4.
As for point (iii), suppose there exists yo ∈ R so that a+(yo) = −∞. Then, as a+

is non-increasing, we also have a+(y) = −∞ for any y ≥ yo. Take yo < y1 < y2 and
γ < infy∈[y1,y2] a−(y). Let Q := (−∞, γ)× (y1, y2) and notice that Q ⊆ C. Consider again
ϑ∗ = inf{t ≥ 0 : (Xx,y

t , Y x,y
t ) ∈ S+}, τ∗ = inf{t ≥ 0 : (Xx,y

t , Y x,y
t ) ∈ S−}, and define

τQ := inf{t ≥ 0 : (Xx,y
t , Y x,y

t ) /∈ Q}. Let (x, y) ∈ Q. By the same reasoning as in Lemma
3.3 in Section 3.1.2, the semi-harmonic characterization of U (as given in [71, Theorem 2.1])
and Doob’s stopping theorem yield that the process(

e−δ(t∧ϑ∗∧τ∗∧τQ)U(Xx,y
t∧ϑ∗∧τ∗∧τQ , Y

x,y
t∧ϑ∗∧τ∗∧τQ) +

∫ t∧ϑ∗∧τ∗∧τQ

0
e−δsc′(Xx,y

s )ds
)
t≥0

is a martingale. Moreover, as Q⊆ C, for any (x, y) ∈Q we have τQ ≤ ϑ∗ ∧ τ∗ = inf{t≥ 0 :
(Xx,y

t , Y x,y
t ) /∈ C}. Thus, for any (x, y) ∈Q, we get

−K+ <U(x, y) = E
[
U(Xx,y

t∧τQ , Y
y
t∧τQ)

]
+E

[∫ t∧τQ

0
e−δsc′(Xx,y

s )ds

]

≤K− +E

[∫ t∧τQ

0
e−δsc′(Xx,y

s )ds

]

=K− + xE

[∫ t∧τQ

0
e−2δs

]
+E

[∫ t∧τQ

0
e−δsX0,y

s ds

]

≤K− + xE

[∫ t∧τQ

0
e−2δs

]
+

∫ ∞

0
e−δsE

[
|X0,y

s |
]
ds≤ κ+ xE

[∫ t∧τQ

0
e−2δs

]
,

where κ is a positive constant independent of x. We now take the limit as x → −∞:
noticing that τQ → inf{t ≥ 0 : Y y

t /∈ (y1, y2)} =: τ (y1,y2) as x → −∞, the expectations
on the right-hand side converge to finite values. In particular, limx→−∞E

[∫ t∧τQ

0 e−2δs
]
=

1
2δ (1 − E[e−2δ(t∧τ (y1,y2))]) > 0, which in turn implies that the right-hand side converges to
−∞ as x→−∞, which leads to a contradiction. Finiteness of a− is dealt with analogously.

We now show that aε+ is Lipschitz continuous, by following [26]. We show the Lipschitz
continuity of the lower boundary a+, as the upper boundary a− can be treated analogously.
For ε ∈ (0,1], set

aε+(y) := sup{x ∈R : U(x, y)≤−K+ + ε}.

We notice that aε+(y) converges to a+(y) pointwise as ε ↓ 0. Indeed, as x 7→ U(x, y) is
increasing for any fixed y and so is y 7→ U(x, y) for fixed x, we have (x,aε+(y)) ∈ C for
any (x, y) and ε > 0, so that aε+(y) ≥ a+(y). Moroever, by definition, (aε+(y))ε>0 is non-
increasing in ε. This implies limε↓0 a

ε
+(y) ≥ a+(y). By using the continuity of U , we have

U(limε↓0 a
ε
+(y), y) = limε↓0U(aε+(y), y) = limε↓0(−K+ + ε) = −K+, which implies that

(limε↓0 a
ε
+(y), y) belongs to S+ and thus limε↓0 a

ε
+(y)≤ a+(y).
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We have that aε+ is continuously differentiable over R. This can be proved as follows: we
first notice that, by the same calculations of the proof of Theorem 3.9, and exploiting the
linearity of the dynamics of (X0, Y ) and of instantaneous cost c′(x), the partial derivatives
of U at the points (aε+(y), y) can be represented as

(3.80)

Ux(a
ε
+(y), y) = E

[∫ τ∗
ε ∧ϑ∗

ε

0
e−2δtdt

]
,

Uy(a
ε
+(y), y) =

1

δ− b
E
[∫ τ∗

ε ∧ϑ∗
ε

0
e−δt

(
e−bt − e−δt

)
dt

]
,

where (τ∗ε , ϑ
∗
ε) are the exit times of (X(aε

+(y),y), Y (aε
+(y),y)) from S+ and S− respectively.

As (aε+(y), y) ∈ C for every y ∈ R and ε > 0 and U ∈ C2(C), the implicit function theorem
implies

(3.81)
daε+
dy

(y) =−
Uy(a

ε
+(y), y)

Ux(aε+(y), y)
=− 1

δ− b

∫∞
0 P(τ∗ε ∧ ϑ∗

ε ≤ t)e−δt
(
e−bt − e−δt

)
dt∫∞

0 P(τ∗ε ∧ ϑ∗
ε ≤ t)e−2δtdt

.

Thanks to Assumption 3.3, we can bound the derivative of aε+ uniformly by a constant L
independent of ε and y. Indeed, we have∣∣∣∣daε+dy

(y)

∣∣∣∣≤ 1

b− δ

∫∞
0 P(τ∗ε ∧ ϑ∗

ε ≤ t)e−2δt
∣∣e−(b−δ)t − 1

∣∣dt∫∞
0 P(τ∗ε ∧ ϑ∗

ε ≤ t)e−2δtdt
≤ 2

b− δ
.

Next, fix y ∈ R and let y1, y2 so that y1 < y < y2. By point (iii) and monotonicity of aε+
for any ε > 0, we have −∞ < a+(y1) ≤ aε+(y) ≤ a1+(y2) for any y in the compact interval
[y1, y2]. Thus, (aε+)ε∈(0,1] is a sequence of equicontinuous uniformly bounded functions de-
fined on the compact [y1, y2]. Ascoli-Arzelà’s theorem then implies that, up to a subsequence,
aε+ converges uniformly to a+ on [y1, y2]. This allows us to deduce that a+ is Lipschitz con-
tinuous on [y1, y2] with constant L independent of the interval. As the interval is arbitrary,
this implies that a+ is Lipschitz over the whole line.

3.2.2. Solution to the ergodic singular control problem. As prescribed by Theorem 2.2,
we now build the optimal control ξ⋆ = (ξ⋆,+, ξ⋆,−) ∈ B which keeps the process inside the
open set C. Consider the process ξ⋆ = (ξ⋆,+, ξ⋆,−) so that the pair (Xξ⋆ , ξ⋆) solves the Sko-
rohod reflection problem:
(3.82)

a+(Yt)≤Xξ⋆

t ≤ a−(Yt), Px,y-a.s., for almost all t≥ 0,

ξ⋆,+t =

∫ t

0
1{Xξ⋆

s−≤a+(Ys)}dξ
⋆,+
s , ξ⋆,−t =

∫ t

0
1{Xξ⋆

s−≥a−(Ys)}dξ
⋆,−
s , Px,y-a.s., ∀t≥ 0,

By the same techniques of Lemma 3.13 in Section 3.1, it can be proved that there exists a
solution to (3.82). As the proof is essentially the same, we omit it. With respect to (3.65), we
notice that we dropped the third request about minimality of the jump size, as in this case
the boundaries a± are proven to be continuous. Moreover, ξ⋆ is admissible: as the control
ξ⋆ keeps the process in [a+(Yt), a−(Yt)] and a± are Lipschitz continuous by Lemma 3.16,
we have |Xξ⋆

T | ≤ κ(1 + |YT |). By exploiting the explicit representation of Y , we deduce
limT→∞

1
T Ey[|YT |] = 0, which gives the admissibility of ξ⋆ as required by Definition 2.1.

We finally apply Theorem 2.2 to guarantee that the control ξ⋆ is optimal.
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THEOREM 3.17. Let ξ⋆ be given by (3.82). Then, ξ⋆ is optimal and the stochastic singu-
lar control problem has a value λ⋆, given by

λ⋆ = lim
T→∞

1

T
Ey

[∫ T

0
λ(Yt)dt

]
,

with λ defined accordingly to (2.27).

PROOF. By Lemma 3.16, there exists α ∈ R so that supy∈R a+(y) < α < infy∈R a−(y),
so that we can define V as in (2.26). Moreover, as U belongs to W2,∞

loc (R2) ∩ C2(C), V ∈
W2,∞

loc (R2)∩C2(C) as well. Recall from (2.27) that λ(y) is given by

λ(y) = c(α) + b(α,y)U(α,y) +
1

2
σ2
1Ux(α,y) + ρσ1σ2Uy(α,y).

By (3.80), Ux(x, y) and Uy(x, y) are bounded over R2. As U(x, y) is bounded as well and
b(x, y) is linear, we have |λ(y)| ≤ κ(1 + |y|), which implies that (λ(Yt))t≥0 belongs to
L1(Ω× [0, T ]) for any T ≥ 0. Finally, ξ⋆ is admissible and, arguing as in [34, Lemma A.1],
P((Xξ⋆

t , Yt) ∈ C) = 1, for all t ≥ 0. Thus, all assumptions of Theorem 2.2 are verified, and
we can conclude that ξ⋆ is an optimal control and that (2.29) holds. As Y admits a stationary
distribution, Remark 2.1 implies that limT↑∞

1
T Ey[

∫ T
0 λ(Πt)dt] is constant in y and equal to

the value of the ergodic stochastic singular control problem λ⋆.
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