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ABSTRACT. We prove existence of a probability solution to the nonlinear stationary
Fokker—Planck—Kolmogorov equation on an infinite dimensional space with a cente-
red Gaussian measure vy with a unit diffusion operator and a drift of the form
—x 4 v(p, x), where v is a bounded mapping with values in the Cameron—Martin
space H of v and v is defined on the space E x X, where is F is the subset of L?(7)
consisting of probability densities. The equation has the form Lzm.)(p ) =0
with Ly 0 = Aup + (b(p,e), D, @), so that the drift coefficient depends on
the unknown solution, which makes the equation nonlinear. This dependence is
assumed to satisfy a suitable continuity condition. This result is applied to drifts of
Vlasov type defined by means of the convolution of a vector field with the solution.
In addition, we consider a more general situation where only the components of
v are uniformly bounded and prove the existence of a probability solution under
some stronger continuity condition on the drift.

Keywords: stationary Fokker—Planck—Kolmogorov equation, nonlinear Fokker—
Planck—Kolmogorov equation, Gaussian measure

1. Introduction

Leonard Gross, one of the pioneers of infinite-dimensional analysis, initiated his
program of the study of infinite-dimensional harmonic analysis in his seminal papers
[16], [17], and [18]. In the subsequent years, this direction was developed by Gross
himself, his students, including Piech, Kuo, and Gordina (see, e.g., [15], [22], [23],
[24], and [25]), and many followers all over the world. Part of Gross’s program
was the investigation of elliptic equations on infinite-dimensional spaces, see, e.g.,
[11], [12], [13], and [14] (of course, there is also a parabolic counterpart which
is not discussed here). As in the finite-dimensional case, several different types of
elliptic equations arise: direct equations such as Lf = Af + (b, Vf) = 0, divergence
type equations, and double-divergence type equations or adjoint equations, which
in case of a constant second order coefficients look like A f —div(fb) = 0. The latter

equation is naturally defined for measures as

L' =0,

which in the finite-dimensional case is understood as the identity

/ Lpdu=0, ¢eCy°R"),
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and in such a form is called the stationary Fokker—Planck—Kolmogorov equation.
This equation is meaningful if b is locally integrable with respect to u, in particular,
if b is locally bounded.

A nonlinear equation arises when the drift b depends on the unknown solution .
For example, a Vlasov-type equation corresponds to the drift

b(p, ) = / bo(z — y) p(dy).

For a recent survey of nonlinear Fokker—Planck—Kolmogorov equations see [10]. In
this paper, we study nonlinear stationary Fokker—Planck—Kolmogorov equations on
infinite-dimensional spaces. Such equations are defined similarly, which is discussed
in Section 2.

Our main result (stated and proved in Section 3) gives the existence of a probability
to the infinite-dimensional nonlinear stationary equation with the drift

b(“v [L’) =-—r+ U(,LL,ZL‘),

where v takes values in the Cameron—Martin space H of a centered Radon Gaussian
measure 7y on a locally convex space X and is uniformly bounded with respect to
the Cameron—-Martin norm on H and is continuous with respect to p is a suitable
sense. A solution is constructed in the set of probability measures with densities
from L?(v). It is also shown that if the field v, depends Borel measurably on a
parameter u from a complete separable metric space U, then one can select a solution
P that is Borel measurable in u. Finally, we consider a more general case where
only the components of v are uniformly bounded. However, in order to ensure the
existence of a probability solution in this case we impose some stronger continuity
condition on v.

2. Notation, terminology and auxiliary results

Let v be a centered Radon Gaussian measure on a locally convex space X (see,
e.g., [2]). The space of continuous linear functionals on X is denoted by X*. Without
loss of generality one can assume that X = R* is the countable power of the real
line and 7 is the countable power of the standard Gaussian measure on the real
line. In that case the dual space X* can be identified with the space R§° of finite
sequences. This measure 7 is called the standard Gaussian measure on R>.

Let X7 be the closure of X* in L?(7y). For the standard Gaussian measure 7y
on R*> the space X7 can be identified with the standard Hilbert space I2: each

element (h,) of [? generates the element ﬁ(x) = > ooy hnayn of X2, and conversely
every element of X7 admits such representation.

The Cameron—-Martin space H = H(v) of v is the space of all vectors h with
finite norm

|h|,, = sup{l(h): l e X*,/ ?dy < 1}.
b'e

For every element h € H(v) there is an element h € X7 such that

l(h)z/ﬁldv Vie X*.
X
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The norm on H = H(7) indicated above is generated by the inner product

(u,v)H:/ uv dry.
b

The mapping h — h is a linear isometry of H (v) and X and the inverse isometry
is denoted by j,,. Thus, j, (ﬁ) = h and

(jH(f)7jH(g))H = (fa g)LQ(’y) Vf,g € X:;

For the standardAGaussian measure v on R* the Cameron—Martin space coincides
with {2 and h +— h is the identity mapping when X7 is identified with 12 as explained
above.

It is known that the Cameron—Martin space is a separable Hilbert space. In
addition, the measure 7 is concentrated on a countable union of metrizable compact
sets, so one can assume below that X is such a space. Moreover, if H is infinite-
dimensional, then there is a Borel linear isomorphism between + and the standard
Gaussian measure v, in the following sense: there are Borel linear subspaces X; C
X and Xy C R*® with 7(X;) = 7(X2) = 1 and one-to-one Borel linear operator
J: X; — X, with Borel J~! such that J takes 7 to 7o and J: H — [? is an
isometry. It follows that the problem we discuss below reduces to the case of R*
with the standard Gaussian measure. The readers who prefer to deal with coordinate
representations can assume that we consider this case.

It is always possible to find an orthonormal basis {e, } in H(y) such that e,, € X*.
For all h € H and | € X* we have

Uh) = (hy gy (1) = Y (hyen) Zen en) (2.1)

n=1

According to Tsirelson’s theorem (see [2]), for any orthonormal basis {e,} in

H (), we have
= Z?n(x)en ~-a.e.,
n=1

where the series converges in X. In particular, for every [ € X* we have

Z en(x)l(e,) v-a.e. (2.2)

Let FC be the space of functlons on X of the form

p(@) =v(l(z), ... . la(2)), ¢ eCTRY), l; € X"
Such functions will be called smooth cylindrical. Any function ¢ € FC of this form
has bounded partial derivatives 8th for all h € X and

ip(x) = lim PO Za% (@), - L))l (B).

t—0

Consequently,
o= 00,000, L)L(W)(h).

ij=1
Suppose that v: X — H is a Borel mapping and

b(z) = —z +v(z).
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Let us fix an orthonormal basis {e,} in H () such that €, € X*. Then we can define
the operator

Lyp = Z[aiso +&(b(x))0e, ()]

defined on FC and taking values in L?(v). Indeed, writing ¢ as above, we have
0z, + €i(b(x))0e, ()
= 00, 0ay (- L)kl (ed) + > Eb(x))0a, (U, - L)l (er),

7,k<n ji<n

which gives

LW_Zaxkam] (..l sz

200wl ) B,
where -
Zlk (e)li(er) = G (1) 3 (15)
Zé\‘(b(x))lj(ei) Z (e +Zez

According to (2 1) and (2.2) the latter equals y-a.e.

() + 1 (o(x)) = L (b(x)).

Therefore,

Lo =Y 00,0001, 1) (G (), (1)) + Y Li(B(
J:k<n 1<n

Thus, Lyp € L*(7) and L; does not depend on our choice of {e,} with the indicated
properties.

Recall that a Borel probability measure is called Radon if for every Borel set B
we have u(B) = sup pu(K), where sup is taken over compact subsets of B.

A Radon probability measure p absolutely continuous with respect to v satisfies
the stationary Fokker—Planck—Kolmogorov equation

Lin=0 (2.3)
if 1(b) € L'(p) for all [ € X* and

/ Lypdu=0 Yy e FC. (2.4)
X

It is worth noting that (2.3) can be interpreted in a weaker sense: we fix an
orthonormal basis {e,} in H(y) such that e, € X*, consider the class FCy,; of
smooth cylindrical functions of the form indicated above defined by means of the
sequence of functionals [,, = €, and define (2.3) by means of the identity (2.4) on
FCre,y. However, it is known (see [7] or [2, Theorem 7.5.6]) that if v is bounded,
then any Borel probability measure pu with X* C L?(u) satisfying the equation
Ly = 0 in this weaker sense is absolutely continuous with respect to v, moreover,
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its Radon-Nikodym density belongs to L?*(y) (see [4]). Note also that in this case
o = du/dy belongs to the Gaussian Sobolev class Wh1(v) and

D 2
/ﬂdvg/ b2 d.
x 0@ X

A more general situation is studied in [9], where the following theorem is proved.
Let us consider the class FCy (e, } of smooth cylindrical functions of the form

p(a) = P(h(z), ..., l(2))

with [,, = €,, and functions ¢ € C§°(R"); unlike FC, this class is not a linear space.
If X = R*® and H = [? with its natural basis {e,}, then [,, = ¢, is the n-coordinate
function and FCq (c,} is just the union of all C§°(R").

A Borel measure p is called a solution to the equation Lju = 0 with respect to
FCofeny if l(v) € L'(p) for all n and (2.4) holds for all ¢ € FCyye,1. Although
FCo e,y is not a linear space, an advantage of using this class is that for any function
¢ € FCoy{e,y the functions ;0. are bounded, so in the case of bounded I;(v) the
functions Lyp are also bounded and belong to L'(p).

THEOREM 2.1. Let pu be a Borel probability measure on X such that |v|,, € L*(u)
and Ly = 0 with respect to FCy (e,y, where b(x) = —x +v(x). Then p is absolutely
continuous with respect to v and for its Radon—Nikodym f = du/dy we have

| ot + 1))y < Cl) [+ el (021 + el log,)) ] 25)
for every a < 1/4, where C(«) is a number depending only on c.

It follows from this result that the solution with respect to FCq ¢,; will be also
a solution with respect to FC, because any function f € FC can be approximated
in any LP(v) by functions from FCy (.} along with its partial derivatives 0, f, 02 f,
where 1+ < N and N is fixed.

Solutions to nonlinear equations are defined similarly. Namely, if £ is a Borel
set of probability densities in L'(y) and v: F x X — H is a Borel mapping, then a
measure ;4 = o -y with o € F is called a solution to the nonlinear Fokker—Planck—
Kolmogorov equation

Lypeit =0, where b(g,z) = —x + v(0, 7), (2.6)

if the measure p satisfies the linear equation (2.3) with b = b(p, e).

3. Main results

Our main result states the existence of a probability solution to the nonlinear
equation with a bounded field v.

THEOREM 3.1. Letv: E x X — H be a bounded Borel mapping, where E is the
subset of L*(vy) consisting of probability densities, equipped with the weak topology
of L*(vy). Suppose that for each x and each h € H the function p — (v(p,x),h),
is sequentially continuous on E with respect to the weak topology of L*(vy). Let
b(p,x) = —x +v(p,x). Then equation (2.6) has a solution p given by a density p,
from E.
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PROOF. Let usfix p € E. According to [26], there is a unique probability density
0, € L*(7) such that the measure -7 satisfies the equation Lype (0p-y) = 0 with the
drift b(p, z) = —x +v(p, ). It follows from [20] and [4] that g, € L*(v). Therefore,
we obtain a mapping ¥: p — g, from E to E. We are going to apply Schauder’s
theorem to show that this mapping has a fixed point. Clearly, any fixed point gives
a solution to the nonlinear equation.

First we observe that there is a constant C' such that every probability solution
to the equation Ly, )(g -v) = 0 with p € E satisfies the estimate

/ o*dy <C. (3.1)
X
This follows from [4, Theorem 2.3], which gives the bound

Y(z: o(x) > t) < *exp (— 0| Int]?), t > 1,

where oo = (27||[v(p, o)|HHOO)_2. If |v(p,®)|, = 0, then this bound means that
o= 1. Once [27v(p, )|, < Cy, we obtain

Y(z: o(x) > t) < e*exp (— Cy % Intf’), t > 1,
so that e

/92d7§1+262/ texp (— Cy?|Int|?) dt

be 1

Next, the subset S of E satisfying (3.1) is weakly compact in L?(vy). In addition, this
subset is convex. In order to apply Schauder’s theorem, it remains to verify that ¥
is continuous on S with respect to the weak topology of L?(vy). Note that the weak
topology is metrizable on S, since S is bounded and L?(v) is separable. Suppose
that functions p, converge in S to a function p € S in the weak topology. We have
to show that the functions ¥(p,) converge weakly to ¥(p). Otherwise there is a
subsequence {p,, } such that ¥(p,,) converges weakly to some g € S different from
U(p). Thus, we can assume that the whole sequence {¥(p,)} converges to g # ¥(p).
It suffices to show that g satisfies the equation Ly, (g -7) = 0, because ¥(p) is
the only solution to this equation in S. Let ¢ be a smooth cylindrical function of
the form ¢(x) = ¥ (li(z), ..., l,(x)), where ¢ € C,(R™) and [; € X*. As explained

above, we have

Liyp,eyp = Z aﬁvkamjw(ll’"'?l )(JH(lk -]H Zl + le(v(p z

jk<m j<m j<m

and similarly for p,,. Clearly,
/ aﬁkal'j/lp(ll’ s >ln) \Ij(pn) d’)/ - / axka$j¢(l17 R ln) gd’%
X X

/lj‘lf(pn)dv—>/ Ligdy
X X

for all j < m. In addition, [;(v(p,,x)) — [j(v(p,x)) and these functions are
uniformly bounded. Hence

J 10 )9 0) @) 2(de) — [ 100029001 (0.

/ Ly, 0)0Y (pn) dy — / Ly, g d,
X X

Thus,
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where the left-hand sides vanish, so the right-hand side vanishes too, which means
that Ly, . (g9 -7) = 0. The proof is complete. O

ExXAMPLE 3.2. Let by: X — H be a bounded Borel mapping and

b(p,r) = /X bo(z — y)p(y) v(dy).

Then b satisfies the hypotheses of the theorem. Indeed, if functions p, converge in
E to a function p in the weak topology of L?(7y), then, for every x, we have

/Xbo(:c— Y)pn(y) 7 (dy) —>/boa:— )¥(dy).

Due to the boundedness of by we have convergence b(p,,z) — b(p,x) in H. In
particular, we have (b(pn,x),h), — (b(p,x),h),, for every h € H. For every fixed p
the mapping x — b(p, z) on X is Borel measurable. For every fixed x the mapping
p +— b(p, x) is continuous on F in the weak topology. Since the sets

Ey={f€E:|fllrzn <N}

are compact metrizable in the weak topology, we conclude that b is jointly Borel
measurable on each Ey x X (see [3, Exercise 6.10.40]). Then b is jointly Borel
measurable on all of £ x X.

The theorem proved above can be extended to more general unbounded fields
v and non-constant diffusion operators. However, this requires more technicalities
based on the results from [5], [9], [4], and [20] and will be considered separately.

We now assume that v depends additionally on a parameter u from a complete
separable metric space U and

(p,z,u) — v,(p,x), ExX xU— H
is a bounded Borel mapping.

PROPOSITION 3.3. There are solutions p, € E to the equations Ly ., o (Pu-7) =
0 such that the mapping u +— p, from U to E is Borel measurable.

PROOF. Let S be the weakly compact set in E introduced in the proof of the
theorem above. For every u € U the set .S, of all solutions p € S to the nonlinear
equation Lzu(p 0 (p-v) =0 is compact. Let us show that the

W ={(u,p):uel,pe S}

is Borel in U x E. Once this is done, we can apply the classical measurable selection
theorem, which gives a Borel mapping F': U — S such that F(u) € S, for every
u € U (see [21, §35]).

As explained above, we can assume that there is a countable family of functionals
l,, € X* separating points in X, so we can assume that the functionals I,, = €, play
this role (or simply deal with R> and take the coordinate functions). Then equation
L (p-y) with respect to FC is equivalent to this equation with respect to FCy t,} (see
the discussion in Section 2). In turn, testing the latter reduces to checking (2.4) for a
suitable countable family {y;} C FCy ,;. Therefore, the equality L; (p,)(p ) =0
is equivalent to the countable system of relations

/ Z 82 —1i0c, 05 + (vu(p, @), €i) 4 lpdy = 0.
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Thus, it remains to observe that this integral defines a Borel function on U x S.
This is obvious for the terms with partial derivatives. Let us consider the function

/X (0P, 9), e2) Py

Using an orthonormal basis {t;} in L?(7), we obtain the functions

/pwjdv/ (D, ), €)  [0; dv,

where the first integral is continuous in p and the second one is Borel measurable
in u, because the function (u, z) — (v,(p, ), €;), ]9, (x) is jointly measurable. O

Finally, we consider a more general situation where v still takes values in H, but
is not assumed uniformly bounded with respect to the norm of . We now assume
instead that

(v, ), en) | < C

for some constant C' and some orthonormal basis {e,} in H. To simplify our
presentation we assume that X = R* and H = [* with its standard basis {e,},
however, a more abstract formulation can be derived easily from what follows. Now
no Gaussian measure is fixed, so the mapping v is defined on P(X) x X, where P(X)
is the space of all Borel probability measures on X equipped with the weak topology
(it is well known that this topology is metrizable by a complete separable metric,
for example, by the Prohorov metric or by the Kantorovich—-Rubinshtein metric).

THEOREM 3.4. Suppose that the functions (p,x) — v,(p,z) = (v(u,z),en),
are continuous on P(X) x X and uniformly bounded. Then there is a probability
solution to equation (2.6) with respect to the class FCo (e,

PROOF. Let us take any sequence of positive numbers «, with 7' := Y "> | o, <
o0o. We construct our solution on the weighted Hilbert space £ C X of sequences

with finite norm
> 5\ 1/2
2l = (D ama?)
n=1

For every k € N we define a k-dimensional mapping v*: P(R*) x R¥ — R* by setting
v¥(p, ) = v, (i, ), n < k, where each vector (z1,. .., ;) € R¥ is identified with the
vector (x1,...,23,0,0,...) € R® and P(R*) is naturally identified with the subset
of P(X) consisting of measures concentrated on R¥.

It follows from our first theorem that for each k there is a probability solution
wr € P(RF) to the nonlinear equation with the drift v*, moreover, we have that such
a solution is absolutely continuous with respect to the standard Gaussian measure
on R*. Indeed, we can consider v*(u, ) only for absolutely continuous measures and
these functlons satisfy the continuity assumption from that theorem, because weak
convergence of densities in L?(7;) implies weak convergence of the corresponding
measures.

Let us take V(z) = |z[2 = > 7 a2 as a Lyapunov function for our finite-
dimensional equations. We have

k

k k
n=1 n=1

n=1

L

< 2T — 2V (x) 4 20V (2)2TYV? < 2T + C°T — V (z).
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Since uy satisfies a linear equation with an operator satisfying the above estimate
with V', it follows from standard a priori estimates for solutions to linear Fokker—
Planck-Kolmogorov equations (see [6]) that

/ Vduy, < (2+ C*T.
Rk

The sets {V < R} are compact in R*, hence it follows from the Chebyshev inequality
that the measures p; are uniformly tight on R*°. Passing to a subsequence, we can
assume that they converge weakly to some probability measure p on R*°.

Let us verify that p is a solution (2.6). Let ¢ € Cg°(RF). We can assume that
02, 0| < 1. For all n > k we have

[ 186 = (@ 96(@)) + (4 ), Viola)] () =0,

Obviously,
[ 186() = (@ Tl mulde) — [ [p(e) - (0, Tta))] )
as n — 0o. Let us show that for each j < k we have
[ 5l 0)02, ) () = [ sl ot i)

Let € > 0. We have |v;(jn, 2)0,;(x)| < C. There is R > 0 such that
pn(V > R) +u(V > R) <eC™!

for all n. Hence the integrals of v;(p,,r)0,,0(x) over the set {V > R} do not
exceed €. The sequence {u,} with the added limit g is a compact set. By the
uniform continuity of v; on compacts sets we conclude that v;(u,, x) — v;(p, )
uniformly on {V < R}. Hence for all n large enough we have

\/ 0t )0 0) 1) = [0y, ) )] < =
{V<R} {V<R}
In addition, for all n large enough
wawmmemm—me@%ﬂmMM><a
For such n we obtain
'/ 050210 0) ) = [ )0l )| < 25,
{V<R} {V<R}
hence
U’ 0t )00, 000 ) — [ )0 00) )| < 3.
{V<R} {V<R}

Therefore, we have the desired convergence of the integrals of v; (i, ¥)0,,©(x), which
shows that p is a solution to our equation. 0
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