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Abstract. We prove existence of a probability solution to the nonlinear stationary
Fokker–Planck–Kolmogorov equation on an infinite dimensional space with a cente-
red Gaussian measure γ with a unit diffusion operator and a drift of the form
−x + v(p, x), where v is a bounded mapping with values in the Cameron–Martin
space H of γ and v is defined on the space E×X, where is E is the subset of L2(γ)
consisting of probability densities. The equation has the form L∗

b(p,•)(p · γ) = 0
with Lb(p,•)ϕ = ∆Hϕ + (b(p, •), D

H
ϕ)

H
, so that the drift coefficient depends on

the unknown solution, which makes the equation nonlinear. This dependence is
assumed to satisfy a suitable continuity condition. This result is applied to drifts of
Vlasov type defined by means of the convolution of a vector field with the solution.
In addition, we consider a more general situation where only the components of
v are uniformly bounded and prove the existence of a probability solution under
some stronger continuity condition on the drift.

Keywords: stationary Fokker–Planck–Kolmogorov equation, nonlinear Fokker–
Planck–Kolmogorov equation, Gaussian measure

1. Introduction

Leonard Gross, one of the pioneers of infinite-dimensional analysis, initiated his
program of the study of infinite-dimensional harmonic analysis in his seminal papers
[16], [17], and [18]. In the subsequent years, this direction was developed by Gross
himself, his students, including Piech, Kuo, and Gordina (see, e.g., [15], [22], [23],
[24], and [25]), and many followers all over the world. Part of Gross’s program
was the investigation of elliptic equations on infinite-dimensional spaces, see, e.g.,
[11], [12], [13], and [14] (of course, there is also a parabolic counterpart which
is not discussed here). As in the finite-dimensional case, several different types of
elliptic equations arise: direct equations such as Lf = ∆f + 〈b,∇f〉 = 0, divergence
type equations, and double-divergence type equations or adjoint equations, which
in case of a constant second order coefficients look like ∆f−div(fb) = 0. The latter
equation is naturally defined for measures as

L∗µ = 0,

which in the finite-dimensional case is understood as the identity∫
Rn

Lϕdµ = 0, ϕ ∈ C∞0 (Rn),
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and in such a form is called the stationary Fokker–Planck–Kolmogorov equation.
This equation is meaningful if b is locally integrable with respect to µ, in particular,
if b is locally bounded.

A nonlinear equation arises when the drift b depends on the unknown solution µ.
For example, a Vlasov-type equation corresponds to the drift

b(µ, x) =

∫
Rn

b0(x− y)µ(dy).

For a recent survey of nonlinear Fokker–Planck–Kolmogorov equations see [10]. In
this paper, we study nonlinear stationary Fokker–Planck–Kolmogorov equations on
infinite-dimensional spaces. Such equations are defined similarly, which is discussed
in Section 2.

Our main result (stated and proved in Section 3) gives the existence of a probability
to the infinite-dimensional nonlinear stationary equation with the drift

b(µ, x) = −x+ v(µ, x),

where v takes values in the Cameron–Martin space H of a centered Radon Gaussian
measure γ on a locally convex space X and is uniformly bounded with respect to
the Cameron–Martin norm on H and is continuous with respect to µ is a suitable
sense. A solution is constructed in the set of probability measures with densities
from L2(γ). It is also shown that if the field vu depends Borel measurably on a
parameter u from a complete separable metric space U , then one can select a solution
pu that is Borel measurable in u. Finally, we consider a more general case where
only the components of v are uniformly bounded. However, in order to ensure the
existence of a probability solution in this case we impose some stronger continuity
condition on v.

2. Notation, terminology and auxiliary results

Let γ be a centered Radon Gaussian measure on a locally convex space X (see,
e.g., [2]). The space of continuous linear functionals onX is denoted byX∗. Without
loss of generality one can assume that X = R∞ is the countable power of the real
line and γ is the countable power of the standard Gaussian measure on the real
line. In that case the dual space X∗ can be identified with the space R∞

0 of finite
sequences. This measure γ is called the standard Gaussian measure on R∞.

Let X∗
γ be the closure of X∗ in L2(γ). For the standard Gaussian measure γ

on R∞ the space X∗
γ can be identified with the standard Hilbert space l2: each

element (hn) of l2 generates the element ĥ(x) =
∑∞

n=1 hnxn of X∗
γ , and conversely

every element of X∗
γ admits such representation.

The Cameron–Martin space H = H(γ) of γ is the space of all vectors h with
finite norm

|h|
H

= sup

{
l(h) : l ∈ X∗,

∫
X

l2 dγ ≤ 1

}
.

For every element h ∈ H(γ) there is an element ĥ ∈ X∗
γ such that

l(h) =

∫
X

ĥl dγ ∀ l ∈ X∗.
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The norm on H = H(γ) indicated above is generated by the inner product

(u, v)
H

=

∫
X

ûv̂ dγ.

The mapping h 7→ ĥ is a linear isometry of H(γ) and X∗
γ and the inverse isometry

is denoted by j
H
. Thus, j

H
(ĥ) = h and

(j
H
(f), j

H
(g))

H
= (f, g)L2(γ) ∀ f, g ∈ X∗

γ .

For the standard Gaussian measure γ on R∞ the Cameron–Martin space coincides

with l2 and h 7→ ĥ is the identity mapping when X∗
γ is identified with l2 as explained

above.
It is known that the Cameron–Martin space is a separable Hilbert space. In

addition, the measure γ is concentrated on a countable union of metrizable compact
sets, so one can assume below that X is such a space. Moreover, if H is infinite-
dimensional, then there is a Borel linear isomorphism between γ and the standard
Gaussian measure γ∞ in the following sense: there are Borel linear subspaces X1 ⊂
X and X2 ⊂ R∞ with γ(X1) = γ∞(X2) = 1 and one-to-one Borel linear operator
J : X1 → X2 with Borel J−1 such that J takes γ to γ∞ and J : H → l2 is an
isometry. It follows that the problem we discuss below reduces to the case of R∞

with the standard Gaussian measure. The readers who prefer to deal with coordinate
representations can assume that we consider this case.

It is always possible to find an orthonormal basis {en} inH(γ) such that ên ∈ X∗.
For all h ∈ H and l ∈ X∗ we have

l(h) = (h, j
H
(l))

H
=

∞∑
n=1

(h, en)
H
(j

H
(l), en)

H
=

∞∑
n=1

ên(h)l(en). (2.1)

According to Tsirelson’s theorem (see [2]), for any orthonormal basis {en} in
H(γ), we have

x =
∞∑

n=1

ên(x)en γ-a.e.,

where the series converges in X. In particular, for every l ∈ X∗ we have

l(x) =
∞∑

n=1

ên(x)l(en) γ-a.e. (2.2)

Let FC be the space of functions on X of the form

ϕ(x) = ψ(l1(x), . . . , ln(x)), ψ ∈ C∞b (Rn), li ∈ X∗.

Such functions will be called smooth cylindrical. Any function ϕ ∈ FC of this form
has bounded partial derivatives ∂hϕ for all h ∈ X and

∂hϕ(x) = lim
t→0

ϕ(x+ th)− ϕ(x)

t
=

n∑
i=1

∂xj
ψ(l1(x), . . . , ln(x))lj(h).

Consequently,

∂2
hϕ =

n∑
i,j=1

∂xj
∂xi
ψ(l1, . . . , ln)li(h)lj(h).

Suppose that v : X → H is a Borel mapping and

b(x) = −x+ v(x).
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Let us fix an orthonormal basis {en} in H(γ) such that ên ∈ X∗. Then we can define
the operator

Lbϕ :=
∞∑
i=1

[∂2
ei
ϕ+ êi(b(x))∂ei

ϕ(x)]

defined on FC and taking values in L2(γ). Indeed, writing ϕ as above, we have

∂2
ei
ϕ+ êi(b(x))∂ei

ϕ(x)

=
∑
j,k≤n

∂xk
∂xj

ψ(l1, . . . , ln)lk(ei)lj(ei) +
∑
j≤n

êi(b(x))∂xj
ψ(l1, . . . , ln)lj(ei),

which gives

Lbϕ =
∑
j,k≤n

∂xk
∂xj

ψ(l1, . . . , ln)
∞∑
i=1

lk(ei)lj(ei)

+
∑
j≤n

∂xj
ψ(l1, . . . , ln)

∞∑
i=1

êi(b(x))lj(ei),

where
∞∑
i=1

lk(ei)lj(ei) = (j
H
(lk), jH

(lj))H
,

∞∑
i=1

êi(b(x))lj(ei) = −
∞∑
i=1

êi(x)lj(ei) +
∞∑
i=1

êi(v(x))lj(ei).

According to (2.1) and (2.2) the latter equals γ-a.e.

−lj(x) + lj(v(x)) = lj(b(x)).

Therefore,

Lbϕ =
∑
j,k≤n

∂xk
∂xj

ψ(l1, . . . , ln)(j
H
(lk), jH

(lj))H
+

∑
j≤n

lj(b(x)).

Thus, Lbϕ ∈ L2(γ) and Lb does not depend on our choice of {en} with the indicated
properties.

Recall that a Borel probability measure is called Radon if for every Borel set B
we have µ(B) = supµ(K), where sup is taken over compact subsets of B.

A Radon probability measure µ absolutely continuous with respect to γ satisfies
the stationary Fokker–Planck–Kolmogorov equation

L∗bµ = 0 (2.3)

if l(b) ∈ L1(µ) for all l ∈ X∗ and∫
X

Lbϕdµ = 0 ∀ϕ ∈ FC. (2.4)

It is worth noting that (2.3) can be interpreted in a weaker sense: we fix an
orthonormal basis {en} in H(γ) such that ên ∈ X∗, consider the class FC{en} of
smooth cylindrical functions of the form indicated above defined by means of the
sequence of functionals ln = ên and define (2.3) by means of the identity (2.4) on
FC{en}. However, it is known (see [7] or [2, Theorem 7.5.6]) that if v is bounded,
then any Borel probability measure µ with X∗ ⊂ L2(µ) satisfying the equation
L∗bµ = 0 in this weaker sense is absolutely continuous with respect to γ, moreover,
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its Radon–Nikodym density belongs to L2(γ) (see [4]). Note also that in this case
% = dµ/dγ belongs to the Gaussian Sobolev class W 1,1(γ) and∫

X

|D
H
%|2

H

%
dγ ≤

∫
X

|b|2
H
dγ.

A more general situation is studied in [9], where the following theorem is proved.
Let us consider the class FC0,{en} of smooth cylindrical functions of the form

ϕ(x) = ψ(l1(x), . . . , ln(x))

with ln = ên and functions ψ ∈ C∞0 (Rn); unlike FC, this class is not a linear space.
If X = R∞ and H = l2 with its natural basis {en}, then ln = ên is the n-coordinate
function and FC0,{en} is just the union of all C∞0 (Rn).

A Borel measure µ is called a solution to the equation L∗bµ = 0 with respect to
FC0,{en} if ln(v) ∈ L1(µ) for all n and (2.4) holds for all ϕ ∈ FC0,{en}. Although
FC0,{en} is not a linear space, an advantage of using this class is that for any function
ϕ ∈ FC0,{en} the functions lj∂ej

ϕ are bounded, so in the case of bounded lj(v) the
functions Lbϕ are also bounded and belong to L1(µ).

Theorem 2.1. Let µ be a Borel probability measure on X such that |v|
H
∈ L1(µ)

and L∗bµ = 0 with respect to FC0,{en}, where b(x) = −x+ v(x). Then µ is absolutely
continuous with respect to γ and for its Radon–Nikodym f := dµ/dγ we have∫

X

f
(
log(f + 1)

)α
dγ ≤ C(α)

[
1 +

∥∥|v|H∥∥
L1(µ)

(
log

(
1 +

∥∥|v|H∥∥
L1(µ)

))α]
(2.5)

for every α < 1/4, where C(α) is a number depending only on α.

It follows from this result that the solution with respect to FC0,{en} will be also
a solution with respect to FC, because any function f ∈ FC can be approximated
in any Lp(γ) by functions from FC0,{en} along with its partial derivatives ∂ei

f , ∂2
ei
f ,

where i ≤ N and N is fixed.
Solutions to nonlinear equations are defined similarly. Namely, if E is a Borel

set of probability densities in L1(γ) and v : E ×X → H is a Borel mapping, then a
measure µ = % · γ with % ∈ E is called a solution to the nonlinear Fokker–Planck–
Kolmogorov equation

L∗b(%,•)µ = 0, where b(%, x) = −x+ v(%, x), (2.6)

if the measure µ satisfies the linear equation (2.3) with b = b(%, •).

3. Main results

Our main result states the existence of a probability solution to the nonlinear
equation with a bounded field v.

Theorem 3.1. Let v : E ×X → H be a bounded Borel mapping, where E is the
subset of L2(γ) consisting of probability densities, equipped with the weak topology
of L2(γ). Suppose that for each x and each h ∈ H the function p 7→ (v(p, x), h)

H

is sequentially continuous on E with respect to the weak topology of L2(γ). Let
b(p, x) = −x + v(p, x). Then equation (2.6) has a solution µ given by a density pµ

from E.
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Proof. Let us fix p ∈ E. According to [26], there is a unique probability density
%p ∈ L1(γ) such that the measure %·γ satisfies the equation L∗b(p,•)(%p ·γ) = 0 with the

drift b(p, x) = −x+ v(p, x). It follows from [20] and [4] that %p ∈ L2(γ). Therefore,
we obtain a mapping Ψ: p 7→ %p from E to E. We are going to apply Schauder’s
theorem to show that this mapping has a fixed point. Clearly, any fixed point gives
a solution to the nonlinear equation.

First we observe that there is a constant C such that every probability solution
to the equation L∗b(p,•)(% · γ) = 0 with p ∈ E satisfies the estimate∫

X

%2 dγ ≤ C. (3.1)

This follows from [4, Theorem 2.3], which gives the bound

γ(x : %(x) ≥ t) ≤ e2 exp
(
− σ∞| ln t|2

)
, t > 1,

where σ∞ =
(
2π

∥∥|v(p, •)|
H

∥∥
∞

)−2
. If |v(p, •)|

H
= 0, then this bound means that

% = 1. Once |2πv(p, x)|
H
≤ C0, we obtain

γ(x : %(x) ≥ t) ≤ e2 exp
(
− C−2

0 | ln t|2
)
, t > 1,

so that ∫
X

%2 dγ ≤ 1 + 2e2
∫ +∞

1

t exp
(
− C−2

0 | ln t|2
)
dt.

Next, the subset S of E satisfying (3.1) is weakly compact in L2(γ). In addition, this
subset is convex. In order to apply Schauder’s theorem, it remains to verify that Ψ
is continuous on S with respect to the weak topology of L2(γ). Note that the weak
topology is metrizable on S, since S is bounded and L2(γ) is separable. Suppose
that functions pn converge in S to a function p ∈ S in the weak topology. We have
to show that the functions Ψ(pn) converge weakly to Ψ(p). Otherwise there is a
subsequence {pnk

} such that Ψ(pnk
) converges weakly to some g ∈ S different from

Ψ(p). Thus, we can assume that the whole sequence {Ψ(pn)} converges to g 6= Ψ(p).
It suffices to show that g satisfies the equation L∗b(p,•)(g · γ) = 0, because Ψ(p) is
the only solution to this equation in S. Let ϕ be a smooth cylindrical function of
the form ϕ(x) = ψ(l1(x), . . . , lm(x)), where ψ ∈ Cb(Rm) and li ∈ X∗. As explained
above, we have

Lb(p,•)ϕ =
∑

j,k≤m

∂xk
∂xj

ψ(l1, . . . , ln)(j
H
(lk), jH

(lj))H
−

∑
j≤m

lj(x) +
∑
j≤m

lj(v(p, x))

and similarly for pn. Clearly,∫
X

∂xk
∂xj

ψ(l1, . . . , ln) Ψ(pn) dγ →
∫

X

∂xk
∂xj

ψ(l1, . . . , ln) g dγ,∫
X

ljΨ(pn) dγ →
∫

X

ljg dγ

for all j ≤ m. In addition, lj(v(pn, x)) → lj(v(p, x)) and these functions are
uniformly bounded. Hence∫

X

lj(v(pn, x))Ψ(pn)(x) γ(dx) →
∫

X

lj(v(p, x))g(x) γ(dx).

Thus, ∫
X

Lb(pn,•)ϕΨ(pn) dγ →
∫

X

Lb(p,•)ϕg dγ,
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where the left-hand sides vanish, so the right-hand side vanishes too, which means
that L∗b(p,•)(g · γ) = 0. The proof is complete. �

Example 3.2. Let b0 : X → H be a bounded Borel mapping and

b(p, x) =

∫
X

b0(x− y)p(y) γ(dy).

Then b satisfies the hypotheses of the theorem. Indeed, if functions pn converge in
E to a function p in the weak topology of L2(γ), then, for every x, we have∫

X

b0(x− y)pn(y) γ(dy) →
∫

X

b0(x− y)p(y) γ(dy).

Due to the boundedness of b0 we have convergence b(pn, x) → b(p, x) in H. In
particular, we have (b(pn, x), h)H

→ (b(p, x), h)
H

for every h ∈ H. For every fixed p
the mapping x 7→ b(p, x) on X is Borel measurable. For every fixed x the mapping
p 7→ b(p, x) is continuous on E in the weak topology. Since the sets

EN = {f ∈ E : ‖f‖L2(γ) ≤ N}
are compact metrizable in the weak topology, we conclude that b is jointly Borel
measurable on each EN × X (see [3, Exercise 6.10.40]). Then b is jointly Borel
measurable on all of E ×X.

The theorem proved above can be extended to more general unbounded fields
v and non-constant diffusion operators. However, this requires more technicalities
based on the results from [5], [9], [4], and [20] and will be considered separately.

We now assume that v depends additionally on a parameter u from a complete
separable metric space U and

(p, x, u) 7→ vu(p, x), E ×X × U → H

is a bounded Borel mapping.

Proposition 3.3. There are solutions pu ∈ E to the equations L∗bu(pu,•)(pu ·γ) =
0 such that the mapping u 7→ pu from U to E is Borel measurable.

Proof. Let S be the weakly compact set in E introduced in the proof of the
theorem above. For every u ∈ U the set Su of all solutions p ∈ S to the nonlinear
equation L∗bu(p,•)(p · γ) = 0 is compact. Let us show that the

W = {(u, p) : u ∈ U, p ∈ Su}
is Borel in U×E. Once this is done, we can apply the classical measurable selection
theorem, which gives a Borel mapping F : U → S such that F (u) ∈ Su for every
u ∈ U (see [21, §35]).

As explained above, we can assume that there is a countable family of functionals
ln ∈ X∗ separating points in X, so we can assume that the functionals ln = ên play
this role (or simply deal with R∞ and take the coordinate functions). Then equation
L∗b(p·γ) with respect to FC is equivalent to this equation with respect to FC0,{en} (see
the discussion in Section 2). In turn, testing the latter reduces to checking (2.4) for a
suitable countable family {ϕj} ⊂ FC0,{en}. Therefore, the equality L∗bu(p,•)(p · γ) = 0
is equivalent to the countable system of relations∫

X

N∑
i=1

[∂2
ei
ϕj − li∂ei

ϕj + (vu(p, •), ei)H
]p dγ = 0.
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Thus, it remains to observe that this integral defines a Borel function on U × S.
This is obvious for the terms with partial derivatives. Let us consider the function∫

X

(vu(p, •), ei)H
]p dγ.

Using an orthonormal basis {ψj} in L2(γ), we obtain the functions∫
X

pψj dγ

∫
X

(vu(p, •), ei)H
]ψj dγ,

where the first integral is continuous in p and the second one is Borel measurable
in u, because the function (u, x) 7→ (vu(p, x), ei)H

]ψj(x) is jointly measurable. �

Finally, we consider a more general situation where v still takes values in H, but
is not assumed uniformly bounded with respect to the norm of H. We now assume
instead that

|(v(µ, x), en)
H
| ≤ C

for some constant C and some orthonormal basis {en} in H. To simplify our
presentation we assume that X = R∞ and H = l2 with its standard basis {en},
however, a more abstract formulation can be derived easily from what follows. Now
no Gaussian measure is fixed, so the mapping v is defined on P(X)×X, where P(X)
is the space of all Borel probability measures on X equipped with the weak topology
(it is well known that this topology is metrizable by a complete separable metric,
for example, by the Prohorov metric or by the Kantorovich–Rubinshtein metric).

Theorem 3.4. Suppose that the functions (µ, x) 7→ vn(µ, x) := (v(µ, x), en)
H

are continuous on P(X) × X and uniformly bounded. Then there is a probability
solution to equation (2.6) with respect to the class FC0,{en}.

Proof. Let us take any sequence of positive numbers αn with T :=
∑∞

n=1 αn <
∞. We construct our solution on the weighted Hilbert space E ⊂ X of sequences
with finite norm

|x|
E

=
( ∞∑

n=1

αnx
2
n

)1/2

.

For every k ∈ N we define a k-dimensional mapping vk : P(Rk)×Rk → Rk by setting
vk

n(µ, x) = vn(µ, x), n ≤ k, where each vector (x1, . . . , xk) ∈ Rk is identified with the
vector (x1, . . . , xk, 0, 0, . . .) ∈ R∞ and P(Rk) is naturally identified with the subset
of P(X) consisting of measures concentrated on Rk.

It follows from our first theorem that for each k there is a probability solution
µk ∈ P(Rk) to the nonlinear equation with the drift vk, moreover, we have that such
a solution is absolutely continuous with respect to the standard Gaussian measure γk

on Rk. Indeed, we can consider vk
n(µ, x) only for absolutely continuous measures and

these functions satisfy the continuity assumption from that theorem, because weak
convergence of densities in L2(γk) implies weak convergence of the corresponding
measures.

Let us take V (x) = |x|2
E

=
∑∞

n=1 αnx
2
n as a Lyapunov function for our finite-

dimensional equations. We have

Lvk(µ,•)V (x) = 2
k∑

n=1

αn − 2
k∑

n=1

αnx
2
n + 2

k∑
n=1

αnxnv
k
n(µ, x)

≤ 2T − 2V (x) + 2CV (x)1/2T 1/2 ≤ 2T + C2T − V (x).
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Since µk satisfies a linear equation with an operator satisfying the above estimate
with V , it follows from standard a priori estimates for solutions to linear Fokker–
Planck–Kolmogorov equations (see [6]) that∫

Rk

V dµk ≤ (2 + C2)T.

The sets {V ≤ R} are compact in R∞, hence it follows from the Chebyshev inequality
that the measures µk are uniformly tight on R∞. Passing to a subsequence, we can
assume that they converge weakly to some probability measure µ on R∞.

Let us verify that µ is a solution (2.6). Let ϕ ∈ C∞0 (Rk). We can assume that
|∂xj

ϕ| ≤ 1. For all n ≥ k we have∫
Rn

[∆ϕ(x)− (x,∇ϕ(x)) + (v(µn, x),∇ϕ(x))]µn(dx) = 0.

Obviously,∫
Rn

[∆ϕ(x)− (x,∇ϕ(x))]µn(dx) →
∫

R∞
[∆ϕ(x)− (x,∇ϕ(x))]µ(dx)

as n→∞. Let us show that for each j ≤ k we have∫
Rn

vj(µn, x)∂xj
ϕ(x)µn(dx) →

∫
R∞

vj(µ, x)∂xj
ϕ(x)µ(dx).

Let ε > 0. We have |vj(µn, x)∂xj
ϕ(x)| ≤ C. There is R > 0 such that

µn(V > R) + µ(V > R) ≤ εC−1

for all n. Hence the integrals of vj(µn, x)∂xj
ϕ(x) over the set {V > R} do not

exceed ε. The sequence {µn} with the added limit µ is a compact set. By the
uniform continuity of vj on compacts sets we conclude that vj(µn, x) → vj(µ, x)
uniformly on {V ≤ R}. Hence for all n large enough we have∣∣∣∣∫

{V≤R}
vj(µn, x)∂xj

ϕ(x)µn(dx)−
∫
{V≤R}

vj(µ, x)∂xj
ϕ(x)µn(dx)

∣∣∣∣ < ε.

In addition, for all n large enough∣∣∣∣∫
X

vj(µ, x)∂xj
ϕ(x)µn(dx)−

∫
X

vj(µ, x)∂xj
ϕ(x)µ(dx)

∣∣∣∣ < ε.

For such n we obtain∣∣∣∣∫
{V≤R}

vj(µ, x)∂xj
ϕ(x)µn(dx)−

∫
{V≤R}

vj(µ, x)∂xj
ϕ(x)µ(dx)

∣∣∣∣ < 2ε,

hence ∣∣∣∣∫
{V≤R}

vj(µn, x)∂xj
ϕ(x)µn(dx)−

∫
{V≤R}

vj(µ, x)∂xj
ϕ(x)µ(dx)

∣∣∣∣ < 3ε.

Therefore, we have the desired convergence of the integrals of vj(µn, x)∂xj
ϕ(x), which

shows that µ is a solution to our equation. �
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2004.

[13] Da Prato G., Zabczyk J. Second order partial differential equations in Hilbert spaces.
Cambridge University Press, Cambridge, 2002.

[14] Dalecky Yu.L., Fomin S.V. Measures and differential equations in infinite-dimensional space.
Transl. from the Russian. With additional material by V.R. Steblovskaya, Yu.V. Bogdansky and
N.Yu. Goncharuk. Kluwer, Dordrecht, 1991.
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