Menu
Contact | A-Z
img

Thursday, February 24, 2022 - 16:45 in H7 + Zoom


Non-symmetric Lévy-type operators

A talk in the Nonlocal Equations: Analysis and Numerics series by
Karol Szczypkowski from Wrocław

Abstract: We prove the uniqueness and the existence of the fundamental solution for the equation $\partial_t =\mathcal{L}^{\kappa}$ for non-symmetric non-local operators $$ \mathcal{L}^{\kappa}f(x):= b(x)\cdot \nabla f(x)+ \int_{\mathbb{R}^d}( f(x+z)-f(x)- 1_{|z|<1} \langle z ,\nabla f(x)\rangle)\kappa(x,z)J(z)\, dz\,, $$ under certain assumptions on $b$, $\kappa$ and $J$. In particular, $J\colon \mathbb{R}^d \to [0,\infty]$ is a Lévy density, i.e., $$\int_{\mathbb{R}^d}(1\land |x|^2)J(x)dx<\infty\,,$$ the function $\kappa(x,z)$ satisfies $0 < c^{-1} \leq \kappa(x,z)\leq c$, and $|\kappa(x,z)-\kappa(y,z)|\leq c|x-y|^{\epsilon_{\kappa}}$ for some $\epsilon_\kappa \in (0, 1]$. The solution gives rise to a semigroup which we also study. [GS] Tomasz Grzywny and Karol Szczypkowski, Heat kernels of non-symmetric Lévy-type operators, J. Differential Equations, 267(10):6004--6064, 2019. [MS] Jakub Minecki and Karol Szczypkowski, Non-symmetric non-local operators, preprint. [S] Karol Szczypkowski, Fundamental solution for super-critical non-symmetric Lévy-type operators, preprint.

Within the CRC this talk is associated to the project(s): A7



Back

© 2017–Present Sonderforschungbereich 1283 | Imprint | Privacy Policy