Menu
Contact | A-Z
img

Wednesday, May 21, 2025 - 14:00 in V2-210


Analysis of a one-step HMM scheme for slow-fast SDE systems

A talk in the SPDEvent series by
Jules Pertinand from Technische Universität München

Abstract: We aim to approximate the law of the following slow-fast stochastic differential equation (SDE) system:
${\mathrm{d}} X_t^\varepsilon = f(X_t^\varepsilon, Y_t^\varepsilon) {\mathrm{d}} t + g(X_t^\varepsilon, Y_t^\varepsilon) {\mathrm{d}} B_t \text{ in } \mathbb{R}^d$
${\mathrm{d}} Y_t^\varepsilon = b(X_t^\varepsilon, Y_t^\varepsilon) {\mathrm{d}} t + \sigma(X_t^\varepsilon, Y_t^\varepsilon) {\mathrm{d}} W_t \text{ in } \mathbb{R}^d$
Under suitable ergodicity assumptions on the fast component $ Y^\varepsilon $, the separation of time scales leads to averaging of the slow component, i.e.
$\forall t >0, \ X_t^\varepsilon \xrightarrow[\varepsilon \to 0]{\textrm{law}} \overline{X}_t$
where $\overline{X}$ satisfies the SDE
${\mathrm{d}} \overline{X}_t = \overline{f}(\overline{X}_t) {\mathrm{d}} t + \overline{g}(\overline{X}_t) {\mathrm{d}} \overline{B}_t .$
Although explicit formulas for $f$ and $g$ exist, they are costly to evaluate in practice. The classical approach is to use a so-called Heterogeneous Multiscale Method (HMM), which cleverly combines discretisation of the dynamics and approximation of $ \overline{f}$ and $\overline{g}$.
Here, we propose the following one-step HMM scheme:
$X_{n+1}^\tau = X_n^\tau + \Delta t f(X_n^\tau, Y_{n+1}^\tau) + \Delta t^{\frac12} g(X_n^\tau, Y^\tau_{n+1}) \Gamma_{n+1}$
$Y_{n+1}^\tau = \phi(X_n^\tau, Y_n^\tau, \tau, \gamma_{n+1})$
for $ \Delta t > 0 $, $ \tau = \sqrt{\Delta t} $, and where $ \phi $ defines a consistent ergodic scheme for $Y$.
Under appropriate ergodicity assumptions for the fast dynamics and its discretisation, we show that despite the simplicity of the scheme, the approximation is not degraded compared to a standard HMM scheme: for a final time $ T > 0 $, a number of steps $ N := \frac{T}{\Delta t} $, and a test function $ \varphi $, we obtain an explicit control of the weak error
$|\mathbb{E}[\varphi(X^\varepsilon_T)] - \mathbb{E}[\varphi(X^\tau_N)] | \lesssim \sqrt{\Delta t} + \varepsilon $
with a computational cost of $ \mathcal{O}(1/\Delta t) $.
Joint work with Charles-Édouard Bréhier (LMAP, Pau) and Ludovic Goudenège (LaMME, Évry)



Back

© 2017–Present Sonderforschungbereich 1283 | Imprint | Privacy Policy