Menu
Contact | A-Z
img

Project C6: Products of coupled random matrices in field theory and statistical mechanics


Principal Investigator(s)
Gernot Akemann
Visitor(s)
Currently no visitors.

Summary:

In this project we will study products of random matrices that are not independent. In particular, we want to find out, if the statistics of the singular values and of the complex eigenvalues of the product matrix remain universal, which is important for applications. At the same time, the coupling between the random matrices that are multiplied shall enable us to find new scaling limits that are relevant e.g. for the Lyapunov exponents. Further applications to field theories with chemical potentials are planned.


Recent Preprints:

20058 Mario Kieburg, Gernot Akemann, Guisi Alfano, Giuseppe Caire PDF

Closed-form performance analysis of linearMIMO receivers in general fading scenarios

Project: C6

X

Closed-form performance analysis of linearMIMO receivers in general fading scenarios


Authors: Mario Kieburg, Gernot Akemann, Guisi Alfano, Giuseppe Caire Projects: C6
Submission Date: 26.05.2020 Submitter: Michael Baake
Download: PDF Link: 20058

20048 Gernot Akemann, Eugene Strahov, Tim Robert Würfel PDF

Averages of products and ratios of characteristicpolynomials in polynomial ensembles

Project: C6

X

Averages of products and ratios of characteristicpolynomials in polynomial ensembles


Authors: Gernot Akemann, Eugene Strahov, Tim Robert Würfel Projects: C6
Submission Date: 05.05.2020 Submitter: Michael Baake
Download: PDF Link: 20048

20029 Gernot Akemann, Michael Baake, Nayden Chakarov, Oliver Krüger, Adam Mielke, Meinolf Ottensmann, Rebecca Werdehausen PDF

Territorial behaviour of buzzards versus random matrix spacing distributions

Project: A6, C6

X

Territorial behaviour of buzzards versus random matrix spacing distributions


Authors: Gernot Akemann, Michael Baake, Nayden Chakarov, Oliver Krüger, Adam Mielke, Meinolf Ottensmann, Rebecca Werdehausen Projects: A6, C6
Submission Date: 23.03.2020 Submitter: Sebastian Herr
Download: PDF Link: 20029

20002 Gernot Akemann, Roger Tribe, Athanasios Tsareas, Oleg Zaboronski PDF

Determinantal structure and bulk universality of conditional overlaps in the complex Ginibre ensemble

Project: B5, C6

X

Determinantal structure and bulk universality of conditional overlaps in the complex Ginibre ensemble


Authors: Gernot Akemann, Roger Tribe, Athanasios Tsareas, Oleg Zaboronski Projects: B5, C6
Submission Date: 30.12.2019 Submitter: Friedrich Götze
Download: PDF Link: 20002

19105 Gernot Akemann, Yanik-Pascal Förster, Mario Kieburg PDF

Universal eigenvector correlations in quaternionic Ginibre ensembles

Project: B5, C6

X

Universal eigenvector correlations in quaternionic Ginibre ensembles


Authors: Gernot Akemann, Yanik-Pascal Förster, Mario Kieburg Projects: B5, C6
Submission Date: 06.12.2019 Submitter: Friedrich Götze
Download: PDF Link: 19105

19104 Tom Claeys, Thorsten Neuschel, Martin Venker PDF

Critical behavior of non-intersecting Brownian motions

Project: B5, C6

X

Critical behavior of non-intersecting Brownian motions


Authors: Tom Claeys, Thorsten Neuschel, Martin Venker Projects: B5, C6
Submission Date: 05.12.2019 Submitter: Gernot Akemann
Download: PDF Link: 19104

19099 Gernot Akemann, Mario Kieburg, Adam Mielke, Tomasz Prosen PDF

Universal Signature from Integrability to Chaos in Open Quantum Systems

Project: C6

X

Universal Signature from Integrability to Chaos in Open Quantum Systems


Authors: Gernot Akemann, Mario Kieburg, Adam Mielke, Tomasz Prosen Projects: C6
Submission Date: 31.10.2019 Submitter: Friedrich Götze
Download: PDF Link: 19099

19009 Gernot Akemann, Roger Tribe, Athanasios Tsareas, Oleg Zaboronski PDF

On the determinantal structure of conditional overlaps for the complex Ginibre ensemble

Project: B5, C6

X

On the determinantal structure of conditional overlaps for the complex Ginibre ensemble


Authors: Gernot Akemann, Roger Tribe, Athanasios Tsareas, Oleg Zaboronski Projects: B5, C6
Submission Date: 29.03.2019 Submitter: Friedrich Götze
Download: PDF Link: 19009

18060 Gernot Akemann, Zdzisław Burda, Mario Kieburg PDF

From Integrable to Chaotic Systems: Universal Local Statistics of Lyapunov exponents

Project: C6

X

From Integrable to Chaotic Systems: Universal Local Statistics of Lyapunov exponents


Authors: Gernot Akemann, Zdzisław Burda, Mario Kieburg Projects: C6
Submission Date: 10.12.2018 Submitter: Friedrich Götze
Download: PDF Link: 18060

18055 Mario Kieburg, Jacobus Verbaarschot, Tilo Wettig PDF

Dirac spectrum and chiral condensate for QCD at fixed θ-angle

Project: C6

X

Dirac spectrum and chiral condensate for QCD at fixed θ-angle


Authors: Mario Kieburg, Jacobus Verbaarschot, Tilo Wettig Projects: C6
Submission Date: 14.11.2018 Submitter: Gernot Akemann
Download: PDF Link: 18055



Back
© 2017–2019 Sonderforschungbereich 1283 | Privacy Policy