To submit a paper, please send an email to the SFB-Webteam: .ed.dlefeleib-inu.htam 3821bfs_bew
19070
Viorel Barbu, Michael RöcknerPDF
Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs Project: A5 Published: Stochastic Partial Differential Equations: Analysis and Computations 9, no. 3 (2021), 702-713 |
19069
Max NendelPDF
A note on stochastic dominance, uniform integrability, and lattice properties Project: C5 Published: Bulletin of the London Mathematical Society 52, no. 5 (2020), 907--923 Notes: DOI: 10.1112/blms.12371 |
19068
Robert Denk, Michael Kupper, Max NendelPDF
Convex semigroups on $L^p$-like spaces Project: C5 Published: Journal of Evolution Equations 21 (2021), 2491–2521 |
19067
Wei Liu, Michael Röckner, José Luís da SilvaPDF
Published: Journal of Functional Analysis 281, no. 8 (2021), 34 pp.
X
Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations |
19065
Jodi Dianetti, Giorgio Ferrari, Markus Fischer, Max NendelPDF
Submodular mean field games: existence and approximation of solutions Published: Ann. Appl. Probab. 31, no. 6 (2021), 2538–2566 Notes: DOI: 10.1214/20-AAP1655 |
19064
Simon HolbachPDF
Project: B4 Published: Stochastic Processes and their Applications 130, no. 11 (2020), 6965--7003
X
Positive Harris recurrence for degenerate diffusions with internal variables and randomly perturbed time-periodic input |
19063
Michael Baake, Uwe GrimmPDF
Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings Project: A6 Published: Documenta Mathematica 25 (2020), 2303--2337 |
19062
Simon Noah NowakPDF
$H^{s,p}$ regularity theory for a class of nonlocal elliptic equations Project: A3 Published: Nonlinear Analysis 195 (2020), 111730: 1–28 |
19061
Michael Röckner, Xiaobin Sun, Longjie XiePDF
Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients Project: B1 |
19060
Benjamin Gess, Martina HofmanováPDF
Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE Published: Ann. Probab. 46 (2018), 2495–2544 |
19059
Benjamin Fehrman, Benjamin GessPDF
Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise Project: B1 Published: Archive for Rational Mechanics and Analysis 233 (2019), 249–322 |
19055
Benjamin Gess, Panagiotis E. SouganidisPDF
Stochastic non-isotropic degenerate parabolic-hyperbolic equations Project: B1 Published: Stochastic Processes and their Applications 127 (2017), 2961–3004 |
19054
Benjamin GessPDF
Regularization and well-posedness by noise for ordinary and partial differential equations Project: B1 Published: Stochastic Partial Differential Equations and Related Fields, eds. A. Eberle et al., Springer, Cham (2018), 43–67 |
19053
Paul Gassiat, Benjamin GessPDF
Regularization by noise for stochastic Hamilton-Jacobi equations Project: B1 Published: Probab. Theory Relat. Fields 173 (2019), 1063–1098 |
19052
Benjamin Gess, Mario MaurelliPDF
Well-posedness by noise for scalar conservation laws Project: B1 Published: Communications in Partial Differential Equations 43 (2018), 1702–1736 |
19050
Benjamin Gess, Scott SmithPDF
Stochastic continuity equations with conservative noise Project: B1 Published: Journal de Mathématiques Pures et Appliquées 9, no. 128 (2019), 225–263 |
19049
Konstantinos Dareiotis, Benjamin GessPDF
Supremum estimates for degenerate, quasilinear stochastic partial differential equations Project: B1 Published: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 55 (2019), 1765–1796 |
19048
Konstantinos Dareiotis, Máté Gerencsér, Benjamin GessPDF
Entropy solutions for stochastic porous media equations Project: B1 Published: Journal of Differential Equations 266 (2019), 3732–3763 |
19047
Michele Coghi, Benjamin GessPDF
Stochastic nonlinear Fokker-Planck equations Project: B1 Published: Nonlinear Analysis. Theory, Methods & Applications 187 (2019), 259–278 |
19046
Paul Gassiat, Benjamin Gess, Pierre-Louis Lions, Panagiotis E. SouganidisPDF
Project: B1 Published: Probab. Theory Relat. Fields 176 (2020), 421–448
X
Speed of propagation for Hamilton-Jacobi equations with multiplicative rough time dependence and convex Hamiltonians |