Menu
Contact | A-Z
img
Search in Preprints  Search in Preprints

Preprints 2019

To submit a paper, please send an email to the SFB-Webteam: .ed.dlefeleib-inu.htam 3821bfs_bew

19070 Viorel Barbu, Michael RöcknerPDF

Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs

Project: A5

Published: Stochastic Partial Differential Equations: Analysis and Computations 9, no. 3 (2021), 702-713

X

Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs


Authors: Viorel Barbu, Michael Röckner Projects: A5
Submission Date: 10.09.2019 Submitter: Alexander Grigor'yan
Download: PDF Link: 19070
Published: Stochastic Partial Differential Equations: Analysis and Computations 9, no. 3 (2021), 702-713

19069 Max NendelPDF

A note on stochastic dominance, uniform integrability, and lattice properties

Project: C5

Published: Bulletin of the London Mathematical Society 52, no. 5 (2020), 907--923

Notes: DOI: 10.1112/blms.12371

X

A note on stochastic dominance, uniform integrability, and lattice properties


Authors: Max Nendel Projects: C5
Submission Date: 09.09.2019 Submitter: Giorgio Ferrari
Download: PDF Link: 19069
Published: Bulletin of the London Mathematical Society 52, no. 5 (2020), 907--923
Notes: DOI: 10.1112/blms.12371

19068 Robert Denk, Michael Kupper, Max NendelPDF

Convex semigroups on $L^p$-like spaces

Project: C5

Published: Journal of Evolution Equations 21 (2021), 2491–2521

X

Convex semigroups on $L^p$-like spaces


Authors: Robert Denk, Michael Kupper, Max Nendel Projects: C5
Submission Date: 05.09.2019 Submitter: Giorgio Ferrari
Download: PDF Link: 19068
Published: Journal of Evolution Equations 21 (2021), 2491–2521

19067 Wei Liu, Michael Röckner, José Luís da SilvaPDF

Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations

Project: A5, B1

Published: Journal of Functional Analysis 281, no. 8 (2021), 34 pp.

X

Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations


Authors: Wei Liu, Michael Röckner, José Luís da Silva Projects: A5, B1
Submission Date: 28.08.2019 Submitter: Moritz Kaßmann
Download: PDF Link: 19067
Published: Journal of Functional Analysis 281, no. 8 (2021), 34 pp.

19065 Jodi Dianetti, Giorgio Ferrari, Markus Fischer, Max NendelPDF

Submodular mean field games: existence and approximation of solutions

Project: C4, C5

Published: Ann. Appl. Probab. 31, no. 6 (2021), 2538–2566

Notes: DOI: 10.1214/20-AAP1655

X

Submodular mean field games: existence and approximation of solutions


Authors: Jodi Dianetti, Giorgio Ferrari, Markus Fischer, Max Nendel Projects: C4, C5
Submission Date: 18.08.2019 Submitter: Herbert Dawid
Download: PDF Link: 19065
Published: Ann. Appl. Probab. 31, no. 6 (2021), 2538–2566
Notes: DOI: 10.1214/20-AAP1655

19064 Simon HolbachPDF

Positive Harris recurrence for degenerate diffusions with internal variables and randomly perturbed time-periodic input

Project: B4

Published: Stochastic Processes and their Applications 130, no. 11 (2020), 6965--7003

X

Positive Harris recurrence for degenerate diffusions with internal variables and randomly perturbed time-periodic input


Authors: Simon Holbach Projects: B4
Submission Date: 09.08.2019 Submitter: Ellen Baake
Download: PDF Link: 19064
Published: Stochastic Processes and their Applications 130, no. 11 (2020), 6965--7003

19063 Michael Baake, Uwe GrimmPDF

Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings

Project: A6

Published: Documenta Mathematica 25 (2020), 2303--2337

X

Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings


Authors: Michael Baake, Uwe Grimm Projects: A6
Submission Date: 02.08.2019 Submitter: Sebastian Herr
Download: PDF Link: 19063
Published: Documenta Mathematica 25 (2020), 2303--2337

19062 Simon Noah NowakPDF

$H^{s,p}$ regularity theory for a class of nonlocal elliptic equations

Project: A3

Published: Nonlinear Analysis 195 (2020), 111730: 1–28

X

$H^{s,p}$ regularity theory for a class of nonlocal elliptic equations


Authors: Simon Noah Nowak Projects: A3
Submission Date: 24.07.2019 Submitter: Alexander Grigor'yan
Download: PDF Link: 19062
Published: Nonlinear Analysis 195 (2020), 111730: 1–28

19061 Michael Röckner, Xiaobin Sun, Longjie XiePDF

Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients

Project: B1

X

Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients


Authors: Michael Röckner, Xiaobin Sun, Longjie Xie Projects: B1
Submission Date: 22.07.2019 Submitter: L’ubomír Baňas
Download: PDF Link: 19061

19060 Benjamin Gess, Martina HofmanováPDF

Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE

Project: B1, B7

Published: Ann. Probab. 46 (2018), 2495–2544

X

Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE


Authors: Benjamin Gess, Martina Hofmanová Projects: B1, B7
Submission Date: 17.07.2019 Submitter: Barbara Gentz
Download: PDF Link: 19060
Published: Ann. Probab. 46 (2018), 2495–2544

19059 Benjamin Fehrman, Benjamin GessPDF

Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise

Project: B1

Published: Archive for Rational Mechanics and Analysis 233 (2019), 249–322

X

Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise


Authors: Benjamin Fehrman, Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19059
Published: Archive for Rational Mechanics and Analysis 233 (2019), 249–322

19055 Benjamin Gess, Panagiotis E. SouganidisPDF

Stochastic non-isotropic degenerate parabolic-hyperbolic equations

Project: B1

Published: Stochastic Processes and their Applications 127 (2017), 2961–3004

X

Stochastic non-isotropic degenerate parabolic-hyperbolic equations


Authors: Benjamin Gess, Panagiotis E. Souganidis Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19055
Published: Stochastic Processes and their Applications 127 (2017), 2961–3004

19054 Benjamin GessPDF

Regularization and well-posedness by noise for ordinary and partial differential equations

Project: B1

Published: Stochastic Partial Differential Equations and Related Fields, eds. A. Eberle et al., Springer, Cham (2018), 43–67

X

Regularization and well-posedness by noise for ordinary and partial differential equations


Authors: Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19054
Published: Stochastic Partial Differential Equations and Related Fields, eds. A. Eberle et al., Springer, Cham (2018), 43–67

19053 Paul Gassiat, Benjamin GessPDF

Regularization by noise for stochastic Hamilton-Jacobi equations

Project: B1

Published: Probab. Theory Relat. Fields 173 (2019), 1063–1098

X

Regularization by noise for stochastic Hamilton-Jacobi equations


Authors: Paul Gassiat, Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19053
Published: Probab. Theory Relat. Fields 173 (2019), 1063–1098

19052 Benjamin Gess, Mario MaurelliPDF

Well-posedness by noise for scalar conservation laws

Project: B1

Published: Communications in Partial Differential Equations 43 (2018), 1702–1736

X

Well-posedness by noise for scalar conservation laws


Authors: Benjamin Gess, Mario Maurelli Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19052
Published: Communications in Partial Differential Equations 43 (2018), 1702–1736

19050 Benjamin Gess, Scott SmithPDF

Stochastic continuity equations with conservative noise

Project: B1

Published: Journal de Mathématiques Pures et Appliquées 9, no. 128 (2019), 225–263

X

Stochastic continuity equations with conservative noise


Authors: Benjamin Gess, Scott Smith Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19050
Published: Journal de Mathématiques Pures et Appliquées 9, no. 128 (2019), 225–263

19049 Konstantinos Dareiotis, Benjamin GessPDF

Supremum estimates for degenerate, quasilinear stochastic partial differential equations

Project: B1

Published: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 55 (2019), 1765–1796

X

Supremum estimates for degenerate, quasilinear stochastic partial differential equations


Authors: Konstantinos Dareiotis, Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19049
Published: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 55 (2019), 1765–1796

19048 Konstantinos Dareiotis, Máté Gerencsér, Benjamin GessPDF

Entropy solutions for stochastic porous media equations

Project: B1

Published: Journal of Differential Equations 266 (2019), 3732–3763

X

Entropy solutions for stochastic porous media equations


Authors: Konstantinos Dareiotis, Máté Gerencsér, Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19048
Published: Journal of Differential Equations 266 (2019), 3732–3763

19047 Michele Coghi, Benjamin GessPDF

Stochastic nonlinear Fokker-Planck equations

Project: B1

Published: Nonlinear Analysis. Theory, Methods & Applications 187 (2019), 259–278

X

Stochastic nonlinear Fokker-Planck equations


Authors: Michele Coghi, Benjamin Gess Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19047
Published: Nonlinear Analysis. Theory, Methods & Applications 187 (2019), 259–278

19046 Paul Gassiat, Benjamin Gess, Pierre-Louis Lions, Panagiotis E. SouganidisPDF

Speed of propagation for Hamilton-Jacobi equations with multiplicative rough time dependence and convex Hamiltonians

Project: B1

Published: Probab. Theory Relat. Fields 176 (2020), 421–448

X

Speed of propagation for Hamilton-Jacobi equations with multiplicative rough time dependence and convex Hamiltonians


Authors: Paul Gassiat, Benjamin Gess, Pierre-Louis Lions, Panagiotis E. Souganidis Projects: B1
Submission Date: 10.07.2019 Submitter: Martina Hofmanová
Download: PDF Link: 19046
Published: Probab. Theory Relat. Fields 176 (2020), 421–448

© 2017–Present Sonderforschungbereich 1283 | Imprint | Privacy Policy